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Abstract

We describe a mixed Eulerian-Lagrangian approach for solving fluid-structure interaction (FSI) problems.
The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high
speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite
overlapping grids. Curvilinear grids are aligned with each interface and these grids deform as the interface
evolves. The majority of grid points in the fluid domain generally belong to background Cartesian grids
which do not move during a simulation. The FSI-DCG approach allows large displacements of the interfaces
while retaining high quality grids. Efficiency is obtained through the use of structured grids and Cartesian
grids. The governing equations in the fluid and solid domains are evolved in a partitioned approach. We solve
the compressible Euler equations in the fluid domains using a high-order Godunov finite-volume scheme. We
solve the linear elastodynamic equations in the solid domains using a second-order upwind scheme. We
develop interface approximations based on the solution of a fluid-solid Riemann problem that results in a
stable scheme even for the difficult case of light solids coupled to heavy fluids. The FSI-DCG approach is
verified for three problems with known solutions, an elastic-piston problem, the superseismic shock problem
and a deforming diffuser. In addition, a self convergence study is performed for an elastic shock hitting
a fluid filled cavity. The overall FSI-DCG scheme is shown to be second-order accurate in the max-norm
for smooth solutions, and robust and stable for problems with discontinuous solutions for a wide range of
constitutive parameters.
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1. Introduction

Fluid-structure interaction (FSI) problems are multi-domain problems involving moving and deforming
solids that are coupled to a neighboring fluid or gas. These problems are important in many fields of
engineering and applied science and are often computationally challenging. Examples of FSI problems include
the modeling of flow-induced vibrations of structures (aircraft, undersea cables, wind turbines, buildings),
parachutes and airbags, blood flow in veins and arteries, acoustic lenses, thermal expansion in nuclear reactor
cores, shock-structure interactions (blast effects), and weapons effects, to name just a few.

FSI is an active field of research and there are a wide variety of numerical techniques that have been
developed for simulating problems in this area. These techniques include Eulerian, Lagrangian, Arbitrary
Lagrangian-Eulerian (ALE) [1, 2, 3, 4], immersed boundary [5, 6], embedded boundary [7], level-set [8, 9],
interface tracking [10, 11], and distributed-Lagrange-multiplier/fictitious-domain methods [12]. Numerical
approximations based on finite-element [13], finite-volume [14, 15] and discontinuous Galerkin methods [16],
among others, have been developed. FSI simulations can be extremely challenging for a number of reasons.
They can require the coupling of multiple complex physics regimes involving disparate spatial and temporal
scales. In addition, developing accurate and stable numerical approximations for the coupling conditions
between different physical domains is often nontrivial. In particular, the simulation of light solids has proven
to be difficult for many conventional algorithms. This difficulty is often attributed to the so-called added

mass effect whereby the additional force required to push a light body through a heavy fluid (as compared to
pushing the body through a vacuum) can be interpreted as the body having an additional mass (tensor) [17].
A monolithic approach, forming a fully coupled implicit system for fluids and solids, is often used to avoid
stability problems associated with light solids. Monolithic solvers, however, can be expensive and require the
development of new forms of preconditioners to solve the coupled FSI equations. In this article, we present
an interface approximation for partitioned solution algorithms that remains stable for a wide range of FSI
regimes, including those involving light solids.

Another key challenge for FSI simulations is the accurate representation of interfaces and the need to
maintain high-quality grids even under large displacements and rotations. Fast algorithms for grid regener-
ation at each time step are particularly challenging. The different approaches to solving FSI problems all
have their strengths and weaknesses in terms of range of applicability, flexibility, accuracy and computational
performance. Approaches based on block-structured grids, for example, can be efficient and accurate, but
they have difficulty treating general motions of solid bodies. Unstructured-mesh algorithms, on the other
hand, can be flexible at representing the geometry of an FSI problem, but can be computationally expensive
and present challenges in terms of mesh quality as the geometry evolves with time.

In this article we describe a mixed Eulerian-Lagrangian approach for solving FSI problems. The technique
is based on the use of deforming composite grids (DCG) to locally represent interfaces with deforming
curvilinear grids that overlap other static grids. The FSI-DCG approach allows large displacements of
interfaces while retaining high-quality grids and is thus especially effective for problems where solids move
large distances and undergo large rotations. Highly distorted interfaces, however, would require the use of
a locally fine mesh since the interface is represented with a body-fitted grid. Efficiency is achieved through
the use of structured and Cartesian grids along with fast moving-grid generation algorithms. This FSI-
DCG methodology builds upon previous work in the approximation of partial differential equations (PDEs)
using the overlapping grid technique. Overlapping grids have been used to solve a wide variety of problems,
primarily in the fields of aerodynamics and fluid dynamics, but more recently they have also been applied
to electromagnetics [18] and solid mechanics [19]. Overlapping grids were recognized early on to be a useful
technique for treating rigid moving bodies, such as aircraft store separation [20], and have subsequently been
applied to many other moving-grid aerodynamic applications, see for example [21, 22, 23, 24, 25].

The FSI-DCG technique is a general approach which extends the overlapping-grid technology to a wide
class of multi-domain problems with evolving and deforming interfaces. However, in the current context we
first restrict our attention to coupling compressible ideal gases with linear elastic solids. The algorithms and
interface approximations are developed and verified for this important model problem before considering
other models for the fluid or solid. An important aspect of this current work is the development of a scheme
that is second-order accurate for smooth solutions, robust for shocks, and stable for a wide range of material
parameters. In the FSI-DCG approach, the fluid and solid domains are independently discretized with
overlapping grids. One or more curvilinear grids are aligned with each fluid-solid interface and these grids
deform as the interface evolves. The majority of the grid points in the fluid domain generally remain fixed
during the computation, and static grids are used to discretize the fixed reference domains for the solid. The
governing equations in the fluid and solid domains are evolved in a partitioned approach (although a coupled
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monolithic approach is also possible). In fluid domains we solve the Euler equations for a compressible
inviscid fluid on a (possibly) moving grid using a high-order Godunov finite-volume scheme as described
in [22]. In solid domains we solve the elastic wave equation on a fixed reference grid using a second-order
upwind scheme as discussed in [19]. The multi-domain time-stepping algorithm we use is an extension of the
approach developed in [26] for the case of conjugate heat transfer (coupling incompressible fluid flow and
heat transfer in solids).

At a fluid-solid interface of an FSI problem, the normal components of the fluid and solid velocities must
match along with the fluid and solid tractions (the traction is the force per unit area on the interface). The
standard partitioned approach to fluid-solid interfaces attempts to decouple these two conditions by choosing
the interface velocity to be that of the solid, and the interface traction to be that of the fluid. Although
this velocity-from-solid/stress-from-fluid (VS/SF) approximation performs well for many situations, it is
unstable for case of light solids coupled to heavy fluids (more correctly it is unstable when the ratio of the
solid impedance to fluid impedance is too small, see Section 4). Extending the recent work of Banks and
Sjögreen [27], we have developed a new fluid-solid interface approximation that is based on the solution of
a fluid-solid Riemann problem. The linearized form of this interface approximation determines the interface
velocity and traction as an impedance weighted average of the fluid and solid values. It reduces to the
standard VS/SF scheme in the limit of very heavy solids but uses a stress-from-solid/velocity-from-fluid
(SS/VF) approximation in the limit of very light solids. The stability of the linearized interface scheme for
the linearized equations was proved in [27]. The related nonlinear interface scheme described herein also
appears to be stable for all ratios of the fluid to solid impedances.

The remaining sections of the paper are organized as follows. Section 2 provides a list of the principal
variables and their symbols used in the paper. In Section 3 we present the governing equations, boundary
conditions, and interface conditions that define the FSI initial-boundary-value problem under consideration.
Section 4 is devoted to a discussion of the one-dimensional elastic-piston FSI problem. The solution to
the fluid-solid Riemann problem is presented and a number of exact solutions are derived; these are used
later for numerical verification. The FSI-DCG algorithm and interface scheme are described in detail for
the elastic-piston, and the resulting numerical approximations are verified. In Section 5.1 we describe the
multi-dimensional FSI-DCG approach and give a short overview of the overlapping grid technique. In
Section 5.2 we summarize the discrete approximations used to solve the governing equations in the fluid and
solid domains, while in Section 5.3 we outline the multi-domain time-stepping algorithm used for solving
the coupled FSI problem. Section 6 provides numerical verification of the full two-dimensional FSI-DCG
scheme. We begin by verifying the FSI-DCG scheme for three problems with known solutions: the two-
dimensional elastic-piston problem, the superseismic-shock problem, and a deforming-diffuser problem. We
then perform simulations of an elastic shock impacting a fluid-filled cavity to demonstrate the stability of
the two-dimensional interface approximations for light and heavy solids. We close Section 6 by considering
the problem of a shock impacting two deformable sticks. Concluding remarks are made in Section 7.

2. Nomenclature

In this brief section, we list the principal variables that appear in this article and the symbols used to
denote them. Variables associated with the solid are indicated by an over-bar to distinguish them from
variables related to the fluid.

ρ̄, v̄ = (v̄1, v̄2), ū = (ū1, ū2), σ̄ = (σ̄mn) : solid density, displacement, velocity and stress tensor .
(λ, µ), cp, cs : Lamé material parameters, p-wave speed, and s-wave speed for the solid.
ρ, v = (v1, v2), p, E : fluid density, velocity, pressure and total energy.
γ, a : ratio of specific heats and speed of sound in the fluid.
Ωk, x : fluid domain k, fluid spatial coordinates.
Ω̄k, x̄ : solid domain k, solid reference coordinates.
G, Gg : composite grid, component grid g.
x = G(r, t) : mapping (from the unit-square coordinates r) for a moving component grid.

3. Governing equations

We consider the solution to an FSI initial-boundary-value-problem (IBVP). The domain of interest con-
sists of a set of fluid domains {Ωk}, k = 1, 2, . . .Nf , and a set of solid domains {Ω̄k}, k = 1, 2, . . .Ns. The
regions of physical space occupied by the fluid and solid may evolve in time as the interfaces between the
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regions evolve in time. For each fluid domain Ωk(t), which is assumed to contain an inviscid compressible
fluid, we solve the Euler equations in terms of the physical space coordinate x and time t. These equations
may be written in the conservation form

∂tw + ∇x · f(w) = 0, x ∈ Ωk(t), t > 0, (1)

where w = [ρ, ρv, ρE]T is the vector of conserved variables (mass, momentum, energy) and f = [ρv, ρv⊗v+
pI, (ρE +p)v]T is the flux. The total energy is given by ρE = p/(γ−1)+ 1

2ρ|v|2 assuming an ideal gas with a
constant ratio of specific heats. Within each solid domain Ω̄k we solve the equations of linear elasticity which
are written as a first-order system for displacement, velocity and stress in terms of the reference coordinate
x̄ and time t. These equations are

∂tū = v̄, ρ̄∂tv̄ = ∇x̄ · σ̄, ∂tσ̄ = S(∇x̄v̄), x̄ ∈ Ω̄k, t > 0, (2)

where σ̄ = S(∇x̄ū) denotes the stress-strain relationship given by S = λ(∇x̄ · ū)I + µ(∇x̄ū + ∇x̄ū
T ). In

this formulation, the equations governing the solid are solved in each (static) reference domain Ω̄k, and the
evolution of the region occupied by the solid in physical space, x(x̄, t) = x̄ + ū(x̄, t), is determined from the
displacement, ū(x̄, t), whose solution is obtained from (2).

The initial state of the fluid in Ωk is given by w(x, 0) = w0(x), while initial conditions for the solid in
Ω̄k are given by ū(x̄, 0) = ū0(x̄), v̄(x̄, 0) = v̄0(x̄) and σ̄(x̄, 0) = S(∇x̄ū0(x̄)). At an interface I between the
fluid and solid, we impose the interface conditions

{
n(x, t) · v̄(x̄, t) = n(x, t) · v(x, t),

n̄(x̄) · σ̄(x̄, t) = −(p(x, t) − pe)n(x, t),
for x ∈ I and x̄ ∈ Ī, (3)

where pe is a pressure offset, n(x, t) is the normal to the fluid interface, and n̄(x̄) is the corresponding normal
to the solid reference domain3. Here, Ī denotes the position of the interface in the solid reference frame
corresponding to the interface I in the physical domain. The first condition in (3) is a kinematic condition
involving the normal component of velocity (the inviscid equations allow slip) and the second is a dynamic
condition involving a balance of forces on the surface of the interface. Note that the normal to the fluid
domain, n(x, t), is generally different from the normal to the solid reference domain, n̄(x̄), although under
the assumption of small strains that lead to the equations of linear elasticity, these two normals will be
nearly the same. The choice of which normals to use in (3) is thus somewhat arbitrary and we have made
the given choice for convenience of implementation. Boundary conditions are also required for the remaining
boundaries of the fluid and solid domains, and these can take various forms as described for the sample
problems considered later.

4. One-dimensional elastic piston

The one-dimensional elastic-piston problem is an instructive model problem for fluid structure interac-
tions. Exact solutions of the problem can be obtained for various choices of the initial conditions, and these
can be used to check the accuracy and stability of numerical schemes for FSI problems. In addition, we
use the solution of the fluid-solid Riemann problem, a special case of the elastic-piston problem, to develop
discrete approximations of the interface conditions (3) which have favorable stability and accuracy properties.

We consider a one-dimensional elastic-piston problem that couples the solution of a linear elastic solid
(the “piston”) and an inviscid compressible fluid. At t = 0 the elastic solid occupies the domain Ω̄ = (−∞, 0)
and a compressible fluid occupies the adjacent domain Ω(0) = (0,∞). (The subscripts on Ω̄ and Ω have
been dropped for notational convenience.) As time evolves, the interface I between the solid and fluid traces
the curve x = G(t), while the corresponding position of the interface Ī in the solid reference frame is given
by x̄ = 0, as shown in Figure 1. For this one-dimensional problem, the governing equations for the solid and
fluid, given by (2) and (1), respectively, become





∂tū − v̄ = 0

ρ̄∂tv̄ − ∂x̄σ̄ = 0

∂tσ̄ − ρ̄c2
p∂x̄v̄ = 0

, for x̄ < 0,





∂tρ + ∂x(ρv) = 0

∂t(ρv) + ∂x(ρv2 + p) = 0

∂t(ρE) + ∂x(ρEv + pv) = 0

, for x > G(t), (4)

3We use the convention that at a fluid-solid interface both fluid and solid normals point into the fluid domain.
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Figure 1: The x-t diagram for the elastic piston problem with a receding piston.

where ρE = p/(γ − 1) + ρv2/2. As mentioned previously, the equations for the solid are solved in terms of
a fixed reference coordinate x̄ with the corresponding physical position given by x = x̄ + ū, where ū is the
computed displacement. In general, the initial conditions are taken to be

[ū(x̄, 0), v̄(x̄, 0), σ̄(x̄, 0)] = [ū0(x̄), v̄0(x̄), ρ̄c2
p∂x̄ū0(x̄)] for x̄ < 0, (5)

[ρ(x, 0), v(x, 0), p(x, 0)] = [ρ0(x, 0), v0(x, 0), p0(x, 0)], for x > 0, (6)

and the interface conditions in (3) reduce to

{
v̄(x̄, t) = v(x, t),

σ̄(x̄, t) = σ(x, t) ≡ −p(x, t) + pe,
for x = G(t) and x̄ = 0. (7)

We first consider the elastic-piston problem for the case where the initial states in (5) and (6) are taken
to be constants. The solution of this fluid-solid Riemann problem is given in Section 4.1 for both the
linearized and the full nonlinear problems. Solutions of these two fluid-solid Riemann problems are used to
derive discrete approximations of the interface conditions which are then used in the FSI-DCG time-stepping
algorithm. The details of this time-stepping algorithm in the context of the elastic-piston problem are given in
Section 4.2. Finally, we consider numerical results for more general one-dimensional elastic-piston problems
in order to demonstrate the stability and accuracy of the time-stepping scheme. These numerical results
make use of two exact solutions, one involving a shock in the fluid hitting a solid piston at rest, and the
other involving a gently receding piston. The first solution, given in Appendix B, is used in part to test the
robustness and accuracy of our scheme for non-smooth solutions and for the difficult case of a shock hitting
a very light piston. The second solution, given in Appendix A, is designed to test the convergence rate of
the scheme in the maximum norm for a solution that is sufficiently smooth.

4.1. The fluid-solid Riemann problem

In this section we derive the solution to the fluid-solid Riemann (FSR) problem which will later be used
to define a numerical approximation at the interface. The FSR problem is a special case of the elastic-piston
problem where the initial conditions consist of a constant solid state next to a constant fluid state. The FSR
problem is nonlinear in general, but we are also interested in a corresponding linearized FSR problem for
the purpose of developing simpler discrete approximations.

At t = 0 we assume that an elastic solid occupies the domain x̄ < 0 with constant values [v̄0, σ̄0] and
a fluid occupies the domain x > 0 with constant values [ρ0, v0, p0]. Figure 2 shows the basic form of the
solution in a space-time diagram. The fluid wave associated with the C+ characteristic field may be a shock
or an expansion fan. The velocity and stress in the solid jump across the p-wave shock at x̄ = −cpt. Let
[ρ∗, v∗, p∗] denote the fluid state adjacent to the interface and let [v̄∗, σ̄∗] denote the solid state between the
p-wave and the interface. The interface conditions imply v̄∗ = v∗ and σ̄∗ = −p∗ + pe, and the interface
moves with the constant velocity so that its position is given by x = G(t) = v∗t = v̄∗t.

4.1.1. The linearized fluid-solid Riemann problem

We first consider the solution of the fluid-solid Riemann problem in which the fluid equations in (4) are
linearized about the constant initial state [ρ0, v0, p0]. To better see the symmetry between the fluid and solid
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Figure 2: The x-t diagram for the fluid-solid Riemann problem. The wave on the right may be a shock with speed S or an
expansion fan. The interface between the fluid and solid is given by x̄ = 0 in the solid and x = v∗t = v̄∗t.

equations for this problem, we introduce a fluid stress σ = −p + pe and the corresponding constant states
σ0 = −p0 + pe and σ∗ = −p∗ + pe. The linearized equations are





∂tū − v̄ = 0

∂tv̄ − (1/ρ̄)∂x̄σ̄ = 0

∂tσ̄ − ρ̄c2
p∂x̄v̄ = 0

, for x̄ < 0,





∂tρ + v0∂xρ + ρ0∂xv = 0

∂tv + v0∂xv − (1/ρ0)∂xσ = 0

∂tσ + v0∂xσ − ρ0a
2
0∂xv = 0

, for x > v0t. (8)

The characteristic relations for these hyperbolic equations are

{
dū/dt = v̄, on dx̄/dt = 0,

z̄v̄ ∓ σ̄ = z̄v̄0 ∓ σ̄0, on dx̄/dt = ±cp,

{
a2
0ρ + σ = a2

0ρ0 + σ0, on dx/dt = v0,

zv ∓ σ = zv0 ∓ σ0, on dx/dt = v0 ± a0,
(9)

where z̄ = ρ̄cp and z = ρ0a0 are the acoustic impedances of the solid and fluid, respectively. Using the
equations in (9) for the C+ characteristic in the solid and the C− characteristic in the fluid, along with the
interface conditions {

v̄(x̄, t) = v(x, t),

σ̄(x̄, t) = σ(x, t),
for x = v0t and x̄ = 0, (10)

gives z̄v∗ − σ∗ = z̄v̄0 − σ̄0 and zv∗ + σ∗ = zv0 + σ0. Whence,

v∗ = v̄∗ =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
, (11)

σ∗ = σ̄∗ =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0

z̄−1 + z−1
. (12)

The density of the fluid adjacent to the interface is given by ρ∗ = ρ0 − (σ∗ −σ0)/a2
0, which is obtained using

the C0 characteristic equation in (9) that holds along particle paths dx/dt = v0 in the fluid. This condition
is a linearized form of the entropy condition

ρ∗ = ρ0(p
∗/p0)

1/γ . (13)

In practice, we have found this latter condition to be preferable to the lineared form for use in numerical
simulations. Denote this solution, (11), (12) and (13) to the linearized FSR problem by

[ρ∗, v∗, p∗; v̄∗, σ̄∗] = LFSR(ρ0, v0, p0; v̄0, σ̄0). (14)

The results in (11) and (12) show that the velocity and stress in the fluid (and in the solid) adjacent to the
interface are given by impedance-weighted combinations of the initial states of the fluid and solid. In particu-
lar, we note that the commonly used velocity-from-solid/stress-from-fluid (VS/SF) interface approximation,
vI = v̄∗ and σI = σ∗, corresponds to (11) and (12) in the limit of a heavy solid, i.e. z/z̄ → 0, provided we
also neglect the terms proportional to σ0 − σ̄0 and v0 − v̄0. (For smooth solutions these latter terms are
approximations to the interface conditions themselves and so are small.) The results in (11), (12) and (13)
are used later to derive discrete approximations for the states on either side of the fluid-solid interface.
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4.1.2. The nonlinear fluid-solid Riemann problem

The solution of the nonlinear FSR problem consists of two cases. In the first case there is a shock in the
fluid in the C+ characteristic field, while in the second case there is an expansion fan (these two cases are
illustrated in Figure 2). Consider first the case of a shock in the fluid traveling with speed S. The jump
conditions at the shock imply

ρ∗ = ρ0
(γ + 1)M2

(γ − 1)M2 + 2
, p∗ = p0

(
1 +

2γ

γ + 1
(M2 − 1)

)
, v∗ = v0 + a0

2(M2 − 1)

(γ + 1)M
, (15)

where M = (S−v0)/a0 is the Mach number of the shock relative to the flow ahead (see, e.g., Whitham [28]).
Combining the jump conditions in (15), the C+ characteristic relation in the solid (i.e. z̄v̄∗−σ∗ = z̄v̄0 − σ̄0),
and the interface conditions gives the following cubic equation for M :

(
1 +

2γ

γ + 1
(M2 − 1) +

σ̄0 − pe

p0

)
1

γ

ρ0a0

ρ̄cp
+

v0 − v̄0

a0
=

2(1 − M2)

(γ + 1)M
. (16)

After solving (16) for the physically relevant root M , the state of the fluid adjacent to the interface is
given by (15) provided M ≥ 1. The state of the solid adjacent to the interface is given by v̄∗ = v∗ and
σ̄∗ = −p∗ + pe. If M < 1, then an expansion fan in the C+ characteristic field is indicated. For this case,
we use the characteristic equations

2

γ − 1
a − v =

2

γ − 1
a0 − v0,

( a

a0

)2

=
( ρ

ρ0

)γ−1

=
( p

p0

) γ−1

γ

, (17)

along with the interface conditions in (7) to obtain the following nonlinear equation satisfied by p∗,

2

γ − 1
a0

(
p∗

p0

) γ−1

2γ

+
p∗ + (σ̄0 − pe)

ρ̄cp
=

2

γ − 1
a0 + v̄0 − u0. (18)

After solving this equation for p∗, the values of a∗, ρ∗, and v∗ are given using the characteristic equations
in (17). The velocity in the expansion fan varies linearly with x and is given by

v(x, t) = v∗ +
x/t − (v∗ + a∗)

v0 + a0 − (v∗ + a∗)
(v0 − v∗), for v∗ + a∗ < x/t < v0 + a0. (19)

Given v(x, t) in the fan, a(x, t), ρ(x, t) and p(x, t) in the fan follow from (17).
In summary, the solution to the nonlinear fluid-solid Riemann problem breaks into two cases correspond-

ing to the existence of a shock (M ≥ 1) or rarefaction (M < 1) in the fluid as indicated by the solution
of (16). For the shock case with M ≥ 1, the solution in the fluid adjacent to the interface is given by (15).
For the rarefaction case with M < 1, the solution is given by (17)–(19). In either case we obtain a formula
for the state adjacent to the interface in terms of the initial states. We denote this solution by

[ρ∗, v∗, p∗; v̄∗, σ̄∗] = FSR(ρ0, v0, p0; v̄0, σ̄0). (20)

It can be shown that the solution to the nonlinear FSR problem is close to that of the linearized FSR problem
when the jump at the interface is small, v̄0 ≈ v0 and σ̄0 ≈ σ0.

4.2. The FSI time-stepping algorithm and discrete interface approximations

In this section, the FSI time-stepping algorithm and discrete approximations used at the fluid-solid inter-
face are described. For clarity, the algorithm will be presented in detail for the case of the one-dimensional
elastic piston. The one-dimensional case is simpler to describe than the general multi-dimensional case and
it contains all of the salient features of the approach. An advantage of the numerical approach discussed
here is that it is stable for both limiting cases of a “heavy” solid next to a “light” fluid and a “light” solid
next to a “heavy” fluid. This is in contrast to the aforementioned standard VS/SF approach which is known
to be unstable for the case of a “light” solid next to a “heavy” fluid. Finally, the discussion here focuses on
the numerical treatment of the interface, while the numerical approximation of the governing equations is
discussed briefly in Section 5.2 for multi-dimensional problems with additional details found in [29, 22, 19].
The interface approximation used here and described below is an extension of the method developed in [27].
In [27] the authors derived the impedance weighted averages (11) and (12) for a linear elastic solid coupled
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to an acoustic fluid. They proved the stability of a numerical scheme using these approximations. The proof
did not include the second terms (σ0 − σ̄0)/(z̄ + z) and (v0 − v̄0)/(z̄−1 + z−1) in (11) and (12), although the
proof can be extended to handle these additional terms. In the current paper we show the benefit (perhaps
necessity) of either keeping these additional terms, or using the full nonlinear solution of the FSR problem
when treating problems with strong shocks. The more accurate treatment for ghost point values given here
also differs from that in [27].

In the fluid domain of the elastic piston, the governing equations in (4) are transformed to a moving
coordinate system r = x − G(t). The solid equations are solved in the fixed reference coordinates x̄,
∞ < x̄ < 0. The governing equations for the solid and the fluid become





∂tū − v̄ = 0

∂tv̄ − (1/ρ̄)∂x̄σ̄ = 0

∂tσ̄ − ρ̄c2
p∂x̄v̄ = 0

, for x̄ < 0,





∂tρ + (v − Ġ)∂rρ + ρ∂rv = 0

∂tv + (v − Ġ)∂rv + (1/ρ)∂rp = 0

∂tp + (v − Ġ)∂rp + ρa2∂rv = 0

, for r > 0, (21)

where ρ = ρ(r, t), v = v(r, t) and p = p(r, t) are now functions of r and t, and Ġ is the velocity of the
interface. The interface jump conditions are

{
v̄(x̄, t) = v(r, t),

σ̄(x̄, t) = −p(r, t) + pe,
for r = 0 and x̄ = 0. (22)

The governing equations for the fluid are written here in non-conservative form since this clarifies the subse-
quent discussion of the numerical treatment of the interface. However, the numerical approximations of the
fluid are developed for the equations in conservation form (see Section 5.2).

solid fluid

x̄

w̄n
−1w̄n

0w̄n
1w̄n

2
. . .

rwn
−1 wn

0 wn
1 wn

2
. . .

Figure 3: Grids for the elastic piston problem. The discrete solution for the solid is denoted w̄
n
i and that for the fluid w

n
i .

Ghost point values w̄
n
−1 and w

n
−1 are included.

To solve this elastic-piston problem numerically, we introduce a mesh for the solid domain x̄i = −i∆x̄,
i = −1, 0, 1, . . . and a mesh for the fluid domain ri = i∆r, i = −1, 0, 1, . . ., and introduce the corresponding
discrete approximations wn

i = [ρn
i , vn

i , pn
i ] and w̄n

i = [ūn
i , v̄n

i , σ̄n
i ], where, for example, ρn

i ≈ ρ(ri, n∆t), as
shown in Figure 3. Suppose the discrete approximations w̄n−1

i and wn−1
i , i = −1, 0, 1, 2, . . ., are given at

time tn−1 = (n− 1)∆t. The algorithm for advancing the solution to the new time tn = n∆t consists of three
stages. These stages are described in the subsections below and are summarized in Figure 4.

4.2.1. Interior Stage

The first stage of the time-stepping algorithm is a predictor step that uses approximations for the location
of the fluid grid, Gp, and its velocity, Ġp, at time tn. These two quantities are obtained by extrapolation in
time from a time history of the grid locations, and are used in the numerical approximations of the PDEs
in (21) to advance the solution to time tn at interior and interface points, i.e. we obtain w̄n

i and wn
i , for

i = 0, 1, 2, . . .. Denote the predicted values for the fluid and solid on the interface by wn
0 ≡ [ρ0, v0, p0] and

w̄n
0 ≡ [ū0, v̄0, σ̄0], respectively, and let σ0 = −p0 + pe. We note that these predicted values do not satisfy

the interface conditions in general. For example, the interface velocity of the solid is generally different from
that of the fluid, i.e. v̄n

0 6= vn
0 .

4.2.2. Interface Stage

The second stage of the time-stepping algorithm is a projection step that uses the predicted interface
values w̄n

0 and wn
0 to determine new interface values that satisfy the jump conditions in (22). These new

interface values, which we denote by ρI , vI , σI and pI ≡ −σI + pe, are found from the solution of the
fluid-solid Riemann problem as described in Section 4.1 with initial left and right states taken to be w̄n

0 and
wn

0 , respectively. We solve the FSR problem in pseudo-time t∗ and determine the solution at the interface

9



The FSI time stepping algorithm

Stage Condition Type Assigns

Interior(a) Predict grid and grid velocity extrapolation Gp, Ġp

Interior(b) Advance w
n
i , w̄

n
i , i = 0, 1, 2, . . . PDE interior, interface

Interface(a) Compute [vI , σI , ρI ] from (23) or (24) projection vI , σI , ρI

Interface(b) Set ρn
0 = ρI , pn

0 = pI , v0 = v̄n
0 = vI , σ̄n

0 = σI projection w
n
0 , w̄

n
0

Interface(c) Correct ūn
0 , grid and grid velocity from (25) projection ūn

0 , Gn, Ġn

Ghost(a) w
n
−1 = E

(3)
+1w

n
0 , w̄

n
−1 = Ē

(3)
+1 w̄

n
0 , extrapolation w

n
−1, w̄

n
−1

Ghost(b) Compute ˙̄v0 = (1/ρ̄)D̄0σ̄n
0 , . . . from (28) PDE ˙̄v0, ˙̄σ0, v̇0, σ̇0

Ghost(c) Compute v̇I , σ̇I from (30) projection v̇I , σ̇I

Ghost(d) Set (1/ρ̄)D̄0σ̄n
0 = v̇I , . . . from (31) compatibility σ̄−1, v̄n

−1, pn
−1, vn

−1

Figure 4: The FSI time stepping algorithm and interface conditions for the case of a solid domain next to a fluid domain. Here
w

n
i = [ρn

i , vn
i , pn

i ] and w̄
n
i = [ūn

i , v̄n
i , σ̄n

i ]. The values on the interface are w
n
0 , w̄

n
0 , while w−1, w̄−1 denote the values at ghost

points. The values of the solution are assigned in the order given.

for t∗ > 0. Using the solution to the linearized FSR problem LFSR(ρ0, v0, p0; v̄0, σ̄0) (equation 14), for
example, gives the impedance weighted approximation

vI =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
,

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0

z̄−1 + z−1
, (23)

ρI = ρ0(pI/p0)
1/γ .

Alternatively, we could use the solution of the nonlinear FSR problem, in which case

[ρI , vI , pI ; v̄I , σ̄I ] = FSR(ρ0, v0, p0; v̄0, σ̄0), (24)

where FSR is defined in Section 4.1.2. After obtaining the projected interface values, taken from (23)
or (24), the predicted interface values are reassigned to be v̄n

0 = vI , σ̄n
0 = σI , ρn

0 = ρI , vn
0 = vI and pn

0 = pI .
The predicted values for the solid displacement on the interface, ūn

0 , the grid location, Gp, and grid
velocity Ġp are also projected with an impedance weighted average to obtain the corrected values

ūn
0 = uI ≡ z̄ū0 + zGp

z̄ + z
, Gn = uI , Ġn = vI . (25)

No further iterations are required to determine the interface and grid values.
For smooth solutions, the interface values in (23) are expected to provide a good approximation since the

linearized solution of the FSR problem is a good approximation to the nonlinear solution. Also, the terms
proportional to σ0 − σ̄0 and v0 − v̄0 in (23) can be neglected since these are of the order of the mesh spacing
squared for smooth solutions. In this case the projection operators provide an impedance-weighted average
of the predicted interface values. For heavy solids and light fluids, i.e. z̄ ≫ z, this projection reduces to the
commonly used FSI approach which uses the velocity from the solid and the stress from the fluid (VS/SF),
vI = v̄0, pI = p0, ρI = ρ0. However, for light solids and heavy fluids, i.e. z̄ ≪ z, the projection uses the
stress-from-solid/velocity-from-fluid (SS/VF) condition.

For problems with shocks, the simpler impedance-weighted averages do not always provide stable ap-
proximations. The situation of a shock in a heavy fluid hitting the interface with a light solid is particularly
difficult. In this case we find it necessary to use either the interface values in (24) given by the solution of
the nonlinear FSR problem or the interface values in (23) given by the linearized FSR problem and including
the terms proportional to σ0 − σ̄0 and v0 − v̄0. Although (24) generally gives slightly better results, we
recommend using the full formulas in (23) as they are easier to implement and give nearly as good results.

4.2.3. Ghost Stage

The third stage of the algorithm assigns the grid values w̄n
−1 and wn

−1 at ghost points. This may be done
using extrapolation of ghost point values as discussed in [27]. An alternate approach, and the one used here,
involves an extrapolation followed by an update of the ghost values using compatibility conditions at the
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interface derived from the governing equations and interface conditions. We have found this latter approach
to be more accurate and stable (in the sense of pressure and density positivity).

The first step involves an extrapolation, which is based on the third-order formulas

w̄n
−1 = ∆3

+w̄n
0 = 3w̄0 − 3w̄1 + w̄2, w−1 = ∆3

+wn
0 = 3w0 − 3w1 + w2.

These extrapolations are sufficient to obtain second-order accuracy for smooth solutions. To handle the more
difficult case when shocks may hit the interface, we use a limited extrapolation denoted by

w̄n
−1 = Ē(3)

+1 w̄n
0 , w−1 = E(3)

+1wn
0 , (26)

and described below in Section 4.2.4. We now consider the equations for velocity and stress in (21) evaluated
at the interface, i.e. at x̄ = r = 0. These are

∂tv̄ =
1

ρ̄
∂x̄σ̄, ∂tσ̄ = ρ̄c2

p∂x̄v̄, ∂tv = −1

ρ
∂rp, ∂tp = −ρa2∂rv. (27)

A discretization of the equations in (27) that uses the extrapolated values at the ghost points gives approx-
imations

˙̄v0 =
1

ρ̄
D̄0σ̄

n
0 , ˙̄σ0 = ρ̄c2

pD̄0v̄
n
0 , v̇0 = − 1

ρn
0

D0p
n
0 , σ̇0 = ρn

0 (an
0 )2D0v

n
0 , (28)

where D̄0v̄i = (v̄i+1 − v̄i−1)/(−2∆x̄) and D0vi = (vi+1 − vi−1)/(2∆r) are the centered divided difference
operators, and ˙̄v0, ˙̄σ0, v̇0 and σ̇0 are second-order accurate approximations for ∂tv̄, ∂tσ̄, ∂tv and −∂tp,
respectively, at x̄0 = r0 = 0. (There is a minus sign in the definition of D̄0v̄i since x̄i+1 − x̄i−1 = −2∆x̄.)
We note that the centered difference approximations in (28) are equivalent to some one-sided difference
approximations in view of the extrapolations in (26).

The last step involves a consideration of the interface conditions in (22) for velocity and stress. These
conditions can be differentiated in time to give

{
∂tv̄(x̄, t) = ∂tv(r, t),

∂tσ̄(x̄, t) = −∂tp(r, t),
for r = 0 and x̄ = 0. (29)

We enforce these interface conditions numerically using the projections in (11) and (12) based on the solution
of linearized FSR problem and set

v̇I =
z̄ ˙̄v0 + zv̇0

z̄ + z
+

σ̇0 − ˙̄σ0

z̄ + z
, σ̇I =

z̄−1 ˙̄σ0 + z−1σ̇0

z̄−1 + z−1
+

v̇0 − ˙̄v0

z̄−1 + z−1
. (30)

We now use the computed values for v̇I and σ̇I defined in (30) in the approximations for the governing
equations to give

1

ρ̄
D̄0σ̄

n
0 = v̇I , ρ̄c2

pD̄0v̄
n
0 = σ̇I , − 1

ρn
0

D0p
n
0 = v̇I , ρn

0 (an
0 )2D0v

n
0 = σ̇I . (31)

The four equations in (31) are solved to update the values of σ̄−1, v̄n
−1, pn

−1 and vn
−1 at ghost points. For

example, σ̄n
−1 = σ̄n

+1 + (2∆x̄)ρ̄v̇I .

4.2.4. Limited extrapolation

To obtain second-order accuracy on smooth solutions we extrapolate values at ghost points to third
order, as described in Section 4.2.3. To prevent negative densities and pressures for problems with shocks it
is necessary to apply a limiter to the extrapolated values for the fluid variables. In practice it is also necessary
to impose a lower bound on the density (ρmin) and pressure (pmin) to prevent these from becoming negative
(for density and pressure fields that are order one in size, we typically use a lower bound of ρmin = 10−5 and
pmin = 10−5). The limited extrapolation procedure we use is similar to the approach described in [22] but
different enough to warrant an explanation here. The limited extrapolation for the fluid pressure blends a
third-order extrapolation and a first-order one, and is defined by

δ1 = p0, δ2 = 2p0 − p1, δ3 = 3p0 − 3p1 + p2, (32)

α = min
(
1,

cδ|δ3 − δ2|
|δ3| + | p0| + |p1| + ǫp

)
, (33)

p−1 = (1 − α)δ3 + αδ1, (34)
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where ǫp is a small parameter that prevents division by zero and cδ is taken as 2. Note that the indicator
function α should be O(h2) for smooth solutions and O(1) in the presence of discontinuities. The fluid
velocity uses the same limited extrapolation as the pressure. The limited extrapolation for the fluid density
is similar to that for the pressure except that it blends a third-order extrapolation with an even symmetry
condition and (34) takes the form

ρ−1 =

{
ρ1 if δ2 < ρmin or δ3 < ρmin,

(1 − α)δ3 + αρ1 otherwise,

where δ2, δ3 and α follow (32)-(33) but with the pressure replaced by the density. The solid variables use
third-order extrapolation with no limiting.

4.3. Numerical results for the one-dimensional elastic-piston

In this section we present results of numerical simulations of elastic-piston problems in one space dimen-
sion. A code was implemented in MATLAB for this problem and used as a test bed to evaluate different
interface discretization strategies. We find it useful to present these results here in order to more clearly
point to the strengths and weaknesses of the various approaches before moving on to the more complex
overlapping grid case in two dimensions. Note that these one-dimensional results were verified by the full
two-dimensional code, and sample results are presented later in Section 6.1.

We solve the one-dimensional FSI problem for the elastic wave equation coupled to a compressible gas.
The solid reference domain [−1, 0] is discretized with N grid points. The fluid domain, which is initially
located on [0, 1], is also discretized with N grid points. We use a second-order accurate extension of Go-
dunov’s method that corresponds to the one-dimensional versions of the multi-dimensional schemes outlined
in Section 5.2. The solution algorithm and treatment of the interface follows the time-stepping algorithm
given in Figure 4.

4.3.1. The smoothly receding piston

As a first example, we consider the case of a smoothly receding elastic piston (see Figure 1) whose exact
solution is given in Appendix A. The initial conditions in the fluid and solid are choosen so that the position
of the interface moves according to a specified smooth function. We choose values Ga = 1 and q = 4 in
equation (A.7) giving an interface motion of G(t) = −t4/4. The initial conditions for the fluid are constant
and those for the solid are defined by (A.8). We take γ = 1.4, ρ0 = 0.1, p0 = ρ0/γ, ρ̄ = rρ, λ = rρλ0, and
µ = rρµ0. The parameter rρ is varied to change the relative densities of the fluid and solid while at the same
time keeping the speed of sound in the solid fixed, cp =

√
λ0 + 2µ0. The ratio of acoustic impedance’s is

z/z̄ = .1/(rρ

√
3) ≈ .06/rρ.

The numerical solution to the receding piston problem is computed on a sequence of grids of increasing
resolution and the errors are computed from the known exact solution. The max-norm error of a fluid or
solid component is defined to be the maximum of the absolute values of the errors for that component. The
relative max-norm error is defined to be the max-norm error divided by the max-norm of the solution values.

Figures 5–7 present the max-norm relative-errors at t = 1.0 for the three cases rρ = 10−5, 1 and 105

corresponding to impedance ratios of z̄/z ≈ 1.7 × 10−4, 1.7 × 101 and 1.7 × 106, respectively. These results
were obtained using a time step equal to 0.8 times the maximum value allowed by either the fluid or solid
solvers alone (i.e. we run at a CFL number equal to 0.8). Similiar errors and convergence rates are obtained
for CFL numbers equal to 0.5 and 0.1. The values in the columns titled “r” give the ratio of the error at
the current grid resolution to that of the next coarser grid resolution in the figure. The convergence rate
is estimated from a least squares fit to the logarithm of the errors. These results we obtained using the
linearized approximation (23) to the fluid-solid Riemann problem. Similar errors are obtained using the full
nonlinear FSR solution. The results in the figures indicate that the solution remains stable and second-
order accurate over this wide range of impedance ratios. By comparison, numerical results for this problem
obtained using the classical velocity-from-solid/stress-from-fluid (VS/SF) interface approximation indicate
that the solution seems stable for approximately z̄/z ≥ 1.5 but becomes unstable for z̄/z ≤ 1.

4.3.2. The elastic-piston shock tube

As a second example we consider the solution to the elastic shock-tube problem given in Appendix B. A
fluid shock moves from right to left and impacts the elastic solid causing a reflected wave (shock or rarefaction)
in the fluid, and a transmitted p-wave in the solid. This case demonstrates that the interface approximations
remain stable and accurate in the presence of shocks. The initial conditions, corresponding to a Mach 2
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Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 2.7e-03 2.1e-03 1.3e-03 3.9e-04 1.2e-04 1.6e-04

G2 40 6.1e-04 4.5 5.2e-04 4.1 3.1e-04 4.2 9.7e-05 4.1 3.4e-05 3.6 3.2e-05 5.2

G3 80 1.4e-04 4.2 1.1e-04 4.5 7.9e-05 3.9 2.4e-05 4.1 8.5e-06 4.0 6.9e-06 4.6

G4 160 3.5e-05 4.2 3.0e-05 3.9 2.0e-05 4.0 5.9e-06 4.0 2.1e-06 4.0 1.6e-06 4.3

rate 2.10 2.06 2.01 2.02 1.95 2.23

Figure 5: Max-norm errors at t = 1.0 for the smoothly receding elastic-piston, very light solid case, rρ = 10−5, solid to fluid
impedance ratio z̄/z = 1.7 × 10−4.

Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 1.6e-03 1.3e-03 1.1e-03 2.4e-04 1.2e-05 1.6e-05

G2 40 3.2e-04 4.9 2.8e-04 4.7 2.2e-04 5.2 5.8e-05 4.0 3.0e-06 4.0 3.9e-06 4.1

G3 80 6.9e-05 4.7 4.9e-05 5.7 4.5e-05 4.8 1.4e-05 4.1 7.5e-07 4.0 9.1e-07 4.3

G4 160 1.7e-05 4.0 1.2e-05 4.1 1.1e-05 4.1 3.6e-06 4.0 1.9e-07 3.9 2.2e-07 4.1

rate 2.17 2.28 2.23 2.02 1.99 2.07

Figure 6: Max-norm relative errors at t = 1.0 for the smoothly receding elastic-piston, medium solid case, rρ = 1, solid to fluid
impedance ratio z̄/z = 1.7 × 101.

Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 1.6e-03 1.3e-03 1.1e-03 2.4e-04 1.7e-05 1.6e-05

G2 40 3.2e-04 4.9 2.8e-04 4.8 2.2e-04 5.2 5.9e-05 4.0 4.0e-06 4.3 3.7e-06 4.3

G3 80 6.7e-05 4.8 5.0e-05 5.6 4.6e-05 4.7 1.4e-05 4.1 9.4e-07 4.2 9.0e-07 4.1

G4 160 1.7e-05 4.0 1.2e-05 4.1 1.1e-05 4.0 3.6e-06 4.0 2.3e-07 4.1 2.3e-07 3.9

rate 2.19 2.28 2.22 2.02 2.07 2.03

Figure 7: Max-norm relative errors at t = 1.0 for the smoothly receding elastic-piston, very heavy solid case, rρ = 105, solid to
fluid impedance ratio z/z̄ = 1.7 × 106.

shock in the fluid moving with speed S0 = −2 are [ρ0, v0, p0] = [1, 0, 1/γ], [ρ1, v1, p1] = [8/3,−5/4, 45/14]
with γ = 1.4 and [v̄0, σ̄0] = [0, 0] with ρ̄ = rρ, λ = rρλ0, and µ = rρµ0. The shock is initially located at
x0 = .25 and the pressure offset is chosen as pe = p0 so that the solid is initially at rest with respect to the
fluid state [ρ0, v0, p0].

Figures 8–10 show the computed solutions in the solid and fluid domains for the three cases rρ = .01, 1
and 50. For the solid domain the quantities ū, v̄, and σ̄/z̄ are plotted. Note that v̄ and σ̄/z̄ lie directly atop
each other in the plots. For the fluid domain the quantities ρ, −v and p are shown. By the times shown the
incident shock has interacted with the interface to produce a transmitted traveling discontinuity in the solid
and a reflected wave in the fluid. For the case of a heavy solid, the reflected wave in the fluid is a shock
while for the light solid case it is an expansion fan. The blip in the fluid density at the piston face, especially
noticeable in Figure 10, is a result of the usual wall heating phenomena [30].

Figures 11–13 give the L1-norm relative errors for the three cases rρ = 105, 1, 10−5 corresponding to
z/z̄ ≈ 6× 104, 0.6, and 6× 10−6. The expected L1 convergence rate for solutions with linear discontinuities
(such as the discontinuous p-wave in the solid solution) is 2/3 [31], and for non-linear discontinuities (such
as the shock in the fluid) is 1. The results in the figures are consistent with these expected rates.

The case of a gas shock hitting a light solid is particularly interesting and challenging. For this case,
we found that it is important to use the full solution of the linearized FSR problem (23) or the solution
of the nonlinear fluid-solid Riemann problem (24) to obtain stable and accurate solutions. In particular, it
was found that the use of the simplified form of the solution of the linear FSR problem (i.e. without the
terms proportional to σ0 − σ̄0 and v0 − v̄0) results in a less robust scheme which generally gives less accurate
solutions.
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Figure 8: Elastic-piston shock tube results at t = 0.4 for the light solid, rρ = .01. Left: solid. Right fluid. The interface
approximation uses the solution to the linearized FSR problem. The solid black lines indicate the exact solution.
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Figure 9: Elastic shock tube results at t = 0.5 for the medium solid, rρ = 1.. Left: solid. Right fluid. The interface
approximation uses the solution to the linearized FSR problem. The solid black lines indicate the exact solution.
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Figure 10: Elastic-piston shock tube results at t = 0.5 for the heavy solid, rρ = 50.. Left: solid. Right fluid. The interface
approximation uses the solution to the linearized FSR problem. The solid black lines indicate the exact solution.

5. The FSI-DCG numerical approach for initial-boundary-value problems

Our numerical approach for the solution of the equations governing an FSI initial-boundary-value problem
is based on the use of composite overlapping grids with locally deforming grids adjacent to the interfaces.
Section 5.1 begins with a brief overview of overlapping grids and then proceeds to a discussion of the
deforming composite grid approach. A more detailed discussion of the overlapping grid approach may be
found in [26, 32, 33], for example. The discretization of the fluid and solid equations on their respective
domains is briefly described in Section 5.2. The extension of the one-dimensional FSI time-stepping algorithm
introduced in Section 4.2 to multiple space dimensions is discussed in Section 5.3.
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Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 2.2e-02 1.7e-02 2.3e-02 9.5e-03 6.2e-02 3.8e-06

G2 40 1.2e-02 1.9 8.7e-03 1.9 1.1e-02 2.0 5.5e-03 1.7 3.5e-02 1.8 2.2e-06 1.8

G3 80 6.6e-03 1.7 4.3e-03 2.0 5.7e-03 2.0 2.3e-03 2.4 2.0e-02 1.8 1.2e-06 1.8

G4 160 3.3e-03 2.0 2.4e-03 1.8 2.9e-03 1.9 1.4e-03 1.7 1.2e-02 1.7 7.2e-07 1.7

rate 0.91 0.95 0.99 0.96 0.80 0.80

Figure 11: Elastic-piston shock tube convergence results for a very light solid, rρ = 10−5; L1-norm relative errors and estimated
convergence rates at t = 0.5.

Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 1.1e-02 4.7e-03 6.5e-03 4.6e-03 4.8e-02 3.6e-02

G2 40 5.4e-03 2.0 2.8e-03 1.7 3.8e-03 1.7 2.0e-03 2.4 2.7e-02 1.8 2.1e-02 1.8

G3 80 2.7e-03 2.0 1.5e-03 1.9 2.0e-03 1.9 8.3e-04 2.4 1.6e-02 1.7 1.2e-02 1.7

G4 160 1.5e-03 1.8 8.2e-04 1.8 1.1e-03 1.8 4.0e-04 2.1 9.5e-03 1.7 7.2e-03 1.7

rate 0.97 0.85 0.85 1.19 0.77 0.77

Figure 12: Elastic-piston shock tube convergence results for a medium light solid, rρ = 1; L1-norm relative errors and estimated
convergence rates at t = 0.5.

Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r

G1 20 2.7e-02 1.8e-02 1.5e-02 5.2e-03 5.6e-02 5.3e-02

G2 40 1.4e-02 1.9 1.4e-02 1.3 7.8e-03 1.9 1.8e-03 2.8 3.2e-02 1.8 3.0e-02 1.8

G3 80 7.4e-03 1.9 6.7e-03 2.0 3.8e-03 2.0 7.2e-04 2.6 1.9e-02 1.7 1.8e-02 1.7

G4 160 3.8e-03 2.0 3.4e-03 2.0 1.9e-03 2.0 2.7e-04 2.6 1.1e-02 1.7 1.1e-02 1.7

rate 0.95 0.82 0.98 1.41 0.77 0.77

Figure 13: Elastic-piston shock tube convergence results for a very heavy solid, rρ = 105; L1-norm relative errors and estimated
convergence rates at t = 0.5.

5.1. Deforming composite grids

In the deforming-composite grid (DCG) approach for multi-domain problems, each fluid or solid domain
is independently discretized with an overlapping grid. An overlapping grid, G, consists of a set of structured
component grids, {Gg}, g = 1, . . . ,N , that cover a domain, either Ωk or Ω̄k, and overlap where the component
grids meet. Typically, boundary-fitted curvilinear grids are used near the boundaries while one or more
background Cartesian grids are used to handle the bulk of the domain. Each component grid is a logically
rectangular, curvilinear grid in nd space dimensions, and is defined by a smooth mapping from parameter
space r (the unit square or cube) to physical space x,

x = Gg(r), r ∈ [0, 1]nd , x ∈ R
nd .

The grid points on a component grid are marked as discretization points (where the governing equations
or boundary conditions are discretized), unused points (points that are not used in the discretization) and
interpolation points. Solution values at interpolation points are generally determined from a tensor-product
Lagrange interpolant in the parameter space of the donor grid. Ghost points are used to facilitate the
discretization of boundary conditions. The classification of grid points into discretization, interpolation and
unused points (grid connectivity) is determined by an overlapping grid generator. We use the Ogen grid
generator [34]. Ogen takes as input a set of overlapping component grids (for one or more domains) along
with a classification of the boundaries of each grid as a physical boundary (including the interface between
fluid and solid domains), an interpolation boundary or a periodic boundary. Unused points are determined
by Ogen using physical boundaries to mark points exterior to the domain following a hole-cutting algorithm.
The remaining points are classified as either discretization points or interpolation points.

In the FSI-DCG approach, component grids next to an interface deform over time to match the interface
motion. This is illustrated in Figure 14. After the points on the interfaces have been evolved from one
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fluid

solid

solid

interfaces

t=1.0 t=1.5 t=2.0

Figure 14: Composite grids at different times from the FSI-DCG simulation a shock hitting two solid elastic cylinders. The
green fluid grids deform over time to follow the fluid-solid interfaces. The blue background Cartesian grid for the fluid remains
fixed. The grids in the solid are shown adjusted for the displacements.

time step to the next, a hyperbolic grid generator is used to regenerate the interface grids. The hyperbolic
grid generator starts from the interface curve (in two dimensions) or interface surface (in three dimensions),
and marches the grid a specified distance into the domain by solving a hyperbolic-like PDE. Hyperbolic
grid generators are a fast and commonly used technique for generating component grids for overlapping
grids [35, 36, 37]. We use the hyperbolic grid generator from Overture which uses an implicit marching
algorithm to construct the grid. The grids are constructed so as to remain smooth and nearly orthogonal.
(See [38] for further details.)

Our PDE solution algorithms for deforming grids require the grid velocity to be given at each grid point.
In addition, the acceleration of the grid is needed on boundaries to impose compatibility conditions there
(e.g. estimating the normal derivative ∂np at an interface from the momentum equation, see equation (42)
below). The grid velocity and acceleration are determined on deforming grids from a time sequence of these
grids using finite differences in time. The number of grid time levels we save is based on the order of accuracy
of the time discretization. For the computations presented in this paper, we compute the grid velocity and
acceleration to second-order using the latest 4 time levels. We note that the additional storage needed for
the time sequence of grids is not large because this is done only for the narrow deforming grids attached to
the interface.

5.2. Discretization of the fluid and solid governing equations

The numerical approximation of the Euler equations (1) follows the approach described in [29] for static
grids and in [22] for moving rigid-body grids. The approximation of the equations of linear elasticity (2) for
overlapping grids is described in [19]. Since these approximations have been discussed in detail elsewhere,
we provide only a brief discussion of the discretizations here.

The first step in the numerical approach involves an exact mapping of the equations from physical space
to computational space. For the Euler equations, consider a mapping for a (possibly moving) component
grid given by x = G(r, t). Following the work in [22], the mapped equations are

∂tw +
1

J
∇r · F +

w

J
∇r · V = 0, (35)

where J = |xr| is the Jacobian of the mapping, F is the mapped flux tensor, and V is related to the grid
velocity Ġ. In particular, the vector components of F and the scalar components of V are given by

Fi =
(
J

nd∑

j=1

∂ri

∂xj
fj

)
− Viw, Vi = J

nd∑

j=1

∂ri

∂xj
Ġj , i = 1, . . . , nd. (36)

The term in (35) involving the mapped flux with components Fi describes the flow of the conserved quantity
w across fixed curves ri = constant, while the dilatation term involving the velocity V describes the change
of w due to the compression or expansion of the grid. As noted in [22], the dilatation term is identically
zero for the rigid-body motions (translations and rotations) considered in that work. For the current work,
the fluid grids attached to interfaces deform as they evolve in time and thus the dilatation term is not zero
in general.
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The numerical approximation of the mapped equation (35) employs a second-order extension of Godunov’s
method. A Roe-type approximate Riemann solver is used (other Riemann solvers are also available) to
compute the mapped fluxes. Slope-limited updates of the left and right input states to the Riemann solver
are used to obtain second-order accuracy (for smooth regions of flow). Centered differences are used to
approximate the dilatation term. The scheme is adjusted to ensure free-stream preservation, including the
case of deforming grids. Further details may be found in [29] and [22].

For the solid, we consider the governing equations in (2) written in the form

∂tw̄ + ∇x̄ · f̄ = 0, (37)

where w̄ = [ū, v̄, σ̄]T is a state variable containing the components of displacement, velocity and stress, and
the vector components of f̄ are given by f̄i = Aiw̄. Here, Ai are coefficient matrices whose components
depend on the density of the solid ρ̄ and on the Lamé parameters λ and µ. For a component grid defined by
the (static) mapping x̄ = Ḡ(r), equation (37) becomes

∂tw̄ +
1

J̄
∇r · F̄ = 0, (38)

where J̄ = |x̄r| is the Jacobian of the mapping (similar to before) and the vector components of F̄ are given
by

F̄i = JCiw̄, Ci =

nd∑

j=1

∂r̄i

∂xj
Aj , i = 1, . . . , nd.

Our numerical approach for solving the mapped equations in (38) uses a second-order (Godunov-based)
upwind scheme. The approach is similar to that discussed in [19] except that a stress-strain relaxation term
is added to the evolution equation for the stress in (2), giving the modified stress equation

∂tσ̄ = S(∇x̄v̄) − β̃
(
σ̄ − S(∇x̄ū)

)
. (39)

Recall that σ̄ = S(∇x̄ū) is the stress-strain relationship as defined in Section 3. The quantity S(∇x̄ū) in (39)
is discretized using fourth-order centered differences while the parameter β̃ is taken to be proportional to the
reciprocal of the time step, β̃ = β/∆t. At the continuous level, the stress-strain relaxation term is identically
zero. However, at the discrete level, this term helps to ensure that the stress-strain relation remains nearly
satisfied even for long-time integrations. In general, we observe that the numerical errors in the components
of stress are reduced when the stress-strain relaxation term is used. The numerical approximation for the
elasticity equations is adjusted to ensure free-stream preservation. The overall FSI-DCG approximation is
also free-stream preserving.

5.3. Multi-domain time-stepping algorithm

We use a strongly coupled partitioned approach to time step the numerical solutions on the fluid and solid
domains. There is a separate fluid dynamics domain solver (Cgcns) for each fluid domain and a separate
solid mechanics domain solver (Cgsm) for each solid domain. Thus, if there is one fluid domain and two solid
domains (as in Figure 14), then there will be one instance of Cgcns and two instances of Cgsm. As a result of
this separation, each fluid or solid in its respective domain may have independent material parameters and
constitutive laws. We note also that the geometry of any given domain does not need to be simply connected
and thus a single domain may consist of, and a single domain solver can be used for, multiple disjoint regions
if desired. A multi-physics control program (Cgmp) manages the multi-domain time stepping. At each time
step, Cgmp calls the separate domain solvers to advance the solutions in their respective domains. Cgmp
also manages the communication of interface data between the domain solvers and manages the assignment
of the interface conditions.

In Section 4.2 we presented our FSI-DCG time-stepping algorithm in detail for the one-dimensional
elastic-piston problem. The goal here is to describe an extension of this algorithm to the more general
multi-dimensional, multi-domain case.

A major change for the multi-dimensional FSI-DCG algorithm is the need to call the hyperbolic grid
generator and overlapping grid generator to update the mesh as the geometry evolves. This additional step
is required in the Interior(a) stage of the algorithm in Figure 4. Given the predicted values for the points
on an interface, a curve is fit to these points (we use a cubic-spline or NURBS curve). This interface curve
is used as the starting curve for the hyperbolic grid generator which marches a given number of steps into
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the domain to define a grid near the interface at the new time. In this approach only the grid points on
the interface are directly evolved in time. We note, however, that there are many other possible schemes
that could be used for regenerating the deformed grid. For example, all of the grid points belonging to a
deforming grid could be evolved using some appropriate evolution equations. We have not attempted this
approach here although it might be useful in general. Once the new interface grids have been determined, the
overlapping grid generator, Ogen, is called to update the grid connectivity. It is important to note that since
the governing equations (35)-(36) for the fluid are solved in conservation form in a coordinate system that
moves with the grid, it is not necessary to remap (interpolate) the solution from the deformed grid at the old
time to that at the new time, thus avoiding a potentially expensive remapping step. The solution values on
the new grid are automatically determined in a conservative fashion through the equations (35)-(36) which
take into account the motion and deformation of an evolving fluid grid cell. In contrast, many ALE schemes
perform one or more Lagrange steps (when the grid follows the fluid trajectories) followed by an Eulerian
remap step where the solution from the Lagrange steps must be remapped (interpolated) to a new (usually
better quality) grid.

At the Interior(b) stage of the FSI-DCG algorithm in Figure 4, the values for wn
i

and w̄n
i

are computed at
all grid points in the interior and on the interface of each fluid and solid domain. For the multi-dimensional
case, this is done using discretizations of the governing equations in (35) and (38). The calculation of the
projected values [vI , σI , ρI ] listed in the Interface(a) stage of the figure is done using the previous formulas
for the one-dimensional case, but with v and σ re-interpreted as n · v and n · σ · n, respectively, for the
multi-dimensional case. The tangential component of the traction on the interface, n · σ · τ , is zero from (3)
since the fluid is inviscid and only supports a stress on the interface in the normal direction due to the fluid
pressure. These projected values of velocity, stress and density are used in the Interface(b) stage to update
the appropriate components of the corresponding grid values in the fluid and the solid on the interface. In
the multi-dimensional case we do not project the interface positions as in (25) but instead take the interface
location determined by the solid for simplicity. This alternate approach does not present any difficulties since
the displacement on the interface is determined from the time integral of the projected interface velocity.

The remaining stages of the FSI-DCG algorithm involve setting ghost points near the interface for the
grids representing the fluid and solid domains. This is done following the stages listed in Figure 4, but
with some modifications needed to handle the governing equation in multiple space dimensions given in (35)
and (38). For example, ghost points are extrapolated along the coordinate line that extends into the interior,
using the limited extrapolation described in Section 4.2.4. Another modification involves the use of the
interior equations on the boundary to determine values at ghost points (27). In multiple space dimensions
the normal component of the momentum equation for the fluid is

n · vt + n · ((v · ∇)v) +
1

ρ

∂p

∂n
= 0. (40)

The interface condition on the velocity is

n(x, t) · v(x, t) = vI(x, t), for x ∈ I,

and taking the time derivative of this last equation gives

n · vt = v̇I − nt · v. (41)

Using (41) in (40) gives the equation used to determine the pressure at the ghost points,

∂p

∂n
= −ρ

(
v̇I − nt · v + n · ((v · ∇)v)

)
, for x ∈ I. (42)

This equation is a multi-dimensional version of the one for ∂tv in (27). The normal derivative of the pressure
in (42) is seen to depend on terms involving the acceleration of the interface in the normal direction, a
rotational acceleration, and an acceleration due to curvature effects. The latter two terms are extensions
for the multi-dimensional case. We note that the rotational acceleration term nt · v in (42) was missing
in the compatibility boundary condition given in [22]. We also note that while the normal components
of the equations, such as (40), are used on the interface to determined ghost point values, the tangential
components of these same equations have also been applied on the interface when the interior equations were
advanced in stage Interior(a).
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6. Numerical results

In this section we verify the accuracy and stability of the full FSI-DCG scheme for a number of steady
and unsteady problems in two space dimensions. We begin in Section 6.1 by revisiting the elastic piston
problem, but now we solve the problem on a two-dimensional domain. The results of this problem can
be compared with the corresponding ones in Section 4.3 obtained using the MATLAB test code. Next,
we consider the superseismic shock problem in Section 6.2. This problem has been considered by others
as a verification test (see [8] and [39] for example), and the results computed here are compared with an
exact similarity solution. In Section 6.3, a new deforming diffuser problem is described. This problem
consists of a compressible gas flowing in a deformable expanding channel. A semi-analytical solution may
be found for this smooth steady flow, and then used to demonstrate second-order accuracy in the max-norm
for the full two-dimensional FSI-DCG approach. In Section 6.4, we show numerical results for an elastic
shock hitting a fluid-filled cylindrical cavity. The solution of this problem is computed for a wide range of
density (impedance) ratios, thus demonstrating the robust nature of our interface approximations in two
dimensions. Finally, we consider the problem of a shock hitting two deformable sticks in Section 6.5. This
problem illustrates, for a more complex problem, the ability of the FSI-DCG approach to treat problems
with large displacements while retaining high quality grids. We note that all simulations to follow use the
linearized approximation (23) to the fluid-solid Riemann problem.

6.1. The two-dimensional elastic piston

The elastic piston problem presented in Section 4 is solved using the FSI-DCG approach in two space
dimensions. We consider a solid reference domain on [−1, 0]× [0, 1] and a fluid domain initially on [0, 1.5]×
[0, 1]. The composite grid for the domain is denoted by G(j)

ep , where j denotes the grid resolution. The
grid spacing in the x-direction is chosen to be ∆x(j) = 1/(10j). The spacing in the y-direction is held

fixed at ∆y = 2/10. The composite grid G(j)
ep consists of a static rectangular grid Rs for the solid domain

[−1, 0] × [0, 1], a static background rectangular grid Rf on [−.75, 1.5] × [0, 1] for the fluid along with a
deforming hyperbolic grid of normal width 0.5 next to the interface. The fluid domain is represented by the

hyperbolic grid and the background grid which overlap where they meet. Figure 15 shows the grid G(2)
ep at

two times during a calculation in which the interface moves to the left. At each time step, the fluid interface
moves and the hyperbolic grid generator is called to regenerate the deforming grid near the fluid interface.
The grid for the solid is static, but is shown adjusted for displacement in the figure.

interface interpolation

solid fluid t = 0

t = 1

x = 1.5x = 0x = −1

x = −2.73 x = −.25 x = 1.5

Figure 15: The composite grid G
(2)
ep for the two-dimensional elastic piston problem at times t = 0 (top) and t = 1 (bottom).

The fluid domain is covered by a blue background grid and green grid that follows the interface. The red grid for the solid
domain is shown adjusted for the displacement.

As a representative calculation, we consider the case of a smoothly receding interface whose solution is
given in Appendix A. We take the parameters γ = 1.4, ρ0 = 0.1, p0 = ρ0/γ, ρ̄ = 1, λ = 1, µ = 1, and
choose q = 4 in the definition (A.7) of the position of the interface. Note the impedance values ρ̄cp =

√
3

and ρ0a0 = 0.1. Initial conditions are taken from the exact solution. In addition, fluid grids at time t = −∆t
and −2∆t are provided as part of the initial conditions so that the initial grid velocities and boundary
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accelerations can be computed accurately using finite differences in time following the approach described in
Section 5.1. Max-norm errors at t = 0.7 are computed for a sequence of grid resolutions and the results are

given in Figure 16. (The max-norm error of a vector grid function such as vi, denoted by E(∞)
v , is defined

as the maximum error over all active grid points and all components of the vector.) The max-norm errors
are seen to converge at close to second-order accuracy.

Fluid Solid

Grid E
(∞)
ρ r E

(∞)
v r E

(∞)
T

r E
(∞)
ū

r E
(∞)
v̄

r E
(∞)
σ̄

r

G
(4)
ep 3.7e-5 4.0e-4 2.5e-4 4.4e-5 2.8e-5 4.2e-5

G
(8)
ep 8.0e-6 4.7 8.0e-5 4.9 4.9e-5 5.1 1.2e-5 3.6 5.6e-6 4.9 7.5e-6 5.7

G
(16)
ep 2.2e-6 3.6 2.2e-5 3.6 1.0e-5 4.9 3.2e-6 3.8 1.2e-6 4.8 1.4e-6 5.4

G
(32)
ep 5.9e-7 3.8 5.9e-6 3.8 2.2e-6 4.6 8.2e-7 3.9 2.6e-7 4.6 3.1e-7 4.5

rate 1.99 2.01 2.27 1.91 2.25 2.37

Figure 16: Two-dimensional elastic piston. Max-norm errors at t = 0.7 for a smoothly receding piston.

6.2. The superseismic shock

The superseismic-shock problem consists of a shock in a gas that travels at an oblique angle to a planar
solid surface. The elevated pressure behind the shock causes the solid to deflect and generate traveling
p-wave and s-wave “shocks” in the solid. The flow is steady in a reference frame attached to the junction of
the fluid shock and the p- and s-wave shocks in the solid, and an exact similarity solution may be constructed
analytically (see Appendix C). Figure 17 illustrates one solution configuration in the reference frame fixed
with the pre-shocked solid. In this reference frame, the junction of the shocks propagates to the right at a

x

y shock

ξ w0w1

fluid

solid

w0w1
w2

interface

θ

p-wave

ηp

s-wave

ηs

S

Figure 17: Flow structure for the superseismic shock problem showing the fluid shock, solid p-wave, solid s-wave and the
fluid-solid interface. The pattern propagates to the right at speed S.

speed S. For the fluid, we let w0 = [ρ0, v0
1 , v0

2 , p0] and w1 = [ρ1, v1
1 , v1

2 , p1] denote the states ahead of and
behind the shock, respectively. For the solid, let w̄k = [ūk, v̄k, σ̄k], k = 0, 1, 2, denote the state ahead of the
p-wave (k = 0), the state between the p- and s-waves (k = 1), and the state behind the s-wave (k = 2). A
slip between the fluid and solid velocities in the upstream state is allowed so that v0

1 need not be zero. This
upstream slip is introduced in order to produce a solution with no slip in the post-shock region. We have
found that a strong slip in the post-shock region can enhance the growth of physical interface instabilities
and cause the formation of small Scholte waves (a Scholte wave [40] is a wave that travels along the interface
between a solid and a fluid) and thus we consider a solution with no post-shock slip in order to avoid the
appearance of such waves.

We consider an exact solution of the superseismic-shock problem for a fluid with γ = 1.4 and initial state
[ρ0, v0

1 , v0
2 , p0] = [0.1,−1.812303, 0, 0.02], and for a solid with parameters [ρ̄, λ, µ] = [5, 1, .5] and zero initial

state w̄0 = [ū0, v̄0, σ̄0] = 0. When the shock junction moves with speed S = .7, the shock angle is found to
be ξ = .05894547 (to the number of digits shown). From these parameters, the solution values for the other
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fluid and solid states can be computed directly using the formulae in Appendix C. For reference we provide
these values here (to 4 significant figures). The post-shock fluid state is

[ρ1, v1
1 , v1

2 , p1] = [.4908, .1811,−.1176, .5208].

The solid states are given by

ū1 = −αp(κ
p · x̄ − cpt)a

p, ū2 = ū1 − αs(κ
s · x̄ − cst)a

s, (43)

v̄1 = αpcpa
p, v̄2 = v̄1 + αscsa

s. (44)

with cp = .6325, cs = .3162, αp = .3736, αs = −.1146, κ
p = ap = [.9035,−.4286], κ

s = [.4518,−.8921]
(as = [−κs

2, κ
s
1]). The solid stress states σ̄

1 and σ̄
2 can be computed from the corresponding displacement

states (43) using the stress-strain relationship. The interface deflection angle is θ = .2230 while the p- and
s-wave angles are ηp = .4429 and ηs = 1.102, respectively.

t = 0 t = 1

fluid

solid
x = Ce(s)E(0)

E(1)

interpolation

interface

Figure 18: The overlapping grid G
(4)
ss for the superseismic shock problem. The grid is shown at times t = 0 and t = 1. The

overlapping grid for the fluid domain consists of the blue, green and cyan grids. The green interface grid deforms to match the
interface. The blue and cyan grids are static. The red grid for the solid domain is shown adjusted for the displacement.

Numerical solutions to the superseismic problem may be obtained using the FSI-DCG approach. This is
done by performing computations in the reference frame fixed with the pre-shock solid as shown in Figure 17.

The composite grid for this calculation is denoted by G(j)
ss , where j denotes the grid resolution with grid

spacing equal to ∆s(j) = 1/(10j) approximately. The grid G(4)
ss is shown in Figure 18 at t = 0 and t = 1.

The grid at t = 0 is constructed based on the initial state given by the exact solution, while the grid at t = 1
is determined by the numerical solution at that time. The overlapping grid for the fluid domain consists
of three component grids. A blue background Cartesian grid for the rectangle [−1, 1] × [−.35, .5], a green
hyperbolic grid of normal width 5∆s(j) adjacent to the interface, and a cyan hyperbolic grid with normal
width 7∆s(j) adjacent to the end curve Ce. The green hyperbolic grid deforms with the interface as the
solution evolves in time, whereas the other two fluid grids are static. Grid points on these latter two static
grids near the overlap with the deforming grid become exposed in time as the interface deflects downward.
The end curve x = Ce(s) is a straight line that follows the exact motion of the material interface point E(t)
shown in Figure 18. As time evolves, E(t) moves downward and to the right as the interface deflects. The
grid for the reference solid domain consists of the red Cartesian grid for the rectangle [−1, 1]× [−.5, .0]. The
solid grid shown in the figure is adjusted for the computed displacement.

The numerical calculation requires initial conditions and boundary conditions. Initial conditions for the
fluid and solid domains are taken from the exact solution. In addition, the fluid grids at time t = −∆t and
−2∆t are provided as part of the exact initial conditions so that the initial grid velocities and boundary
accelerations can be accurately computed using finite differences in time following the approach described in
Section 5.1. The conditions at the fluid-solid interface are computed using the FSI-DCG approach, whereas
the boundary conditions on the perimeter of the fluid and solid domains are taken as Dirichlet conditions
using the exact solution in time.

Figure 19 shows shaded contours of the solution to the superseismic shock problem at t = 1 computed

using the grid G(64)
ss . (This grid with ∆s(64) = 1/640 has a total of about 1.1×106 grid points.) The numerical

solution in the solid is shown in the deformed space x = x̄ + ū. Note that the s-wave angle ηs = 1.102 in
the undeformed space becomes η̃s = .8947 in the deformed space. The shock in the fluid, the p- and s-wave
shocks in the solid, and the fluid-solid interface are clearly visible in the shaded contour plot. Also evident
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are usual artifacts in the fluid density that are due to the initial conditions and a slight mismatch between the
solution and exact boundary condition at the upper wall, together with small reflections in the solid where
the p-wave intersects the lower boundary. Figure 20 presents the discrete L1-norm errors and estimated
convergence rates for a sequence of grids of increasing resolution. The discrete Lp-norm for a grid function
vi is defined in terms of the solution values at all active grid points divided by the total number of active
points, N,

‖vi‖p =

[
1

N

∑

i

|vi|p
]1/p

.

For the error in (possibly) vector and matrix-valued grid functions, we take the error to be the maximum,
over all components, of the L1-norm errors of the individual components, for example

E(1)
v = max

{
‖v1,i − ve

1,i‖1 , ‖v2,i − ve
2,i‖1

}
,

where v1,i and v2,i are the two components of the vector-valued grid function vi, and the corresponding
quantities with superscript e are the exact values on the grid. For the solid domain, the estimated L1-

norm convergence rates are close to the expected values of 4/3 for E(1)
ū , and of 2/3 for E(1)

v̄ and E(1)
σ̄

. The

convergence rates for the fluid variables (E(1)
ρ , E(1)

v , E(1)
T ) are all equal to 1 approximately. A convergence

rate of 1 would be the expected rate for the computation of an isolated fluid shock and indicates that the

slower convergence rate of E(1)
v̄ and E(1)

σ̄
in the solid does not seem to degrade the convergence rate of the

fluid variables. This is not so surprising given that the errors are largest at the solution discontinuities and
not at the interface.

shock

p-wave

s-wave

interface

ρ

v̄2

Figure 19: The superseismic shock solution computed on grid G
(64)
ss showing contours at t = 1.0 of the density, ρ, in the fluid

domain and the vertical velocity, v̄2, in the solid domain.
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Figure 20: Superseismic shock convergence results. Discrete L1-norm errors at t = 1.0.

6.3. The deforming diffuser

The deforming diffuser problem consists of a steady supersonic flow in a deformable expanding channel.
We consider the flow in the vicinity of the lower wall of the channel as illustrated in Figure 21. The shape
of the deformable wall is determined by a balance between the fluid pressure and the stresses in the solid.
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Ideally, the problem would be defined on a semi-infinite domain, but side boundaries are introduced for
numerical convenience as shown in the figure. The geometry of the problem can be arranged so that the
solution remains smooth with no shocks in the fluid domain and no corner-singularities in the solid. It is
also possible to obtain a semi-analytical solution of the steady problem, and thus this solution can be used
to check whether the computed FSI-DCG solution is second-order accurate in the max-norm for smooth
two-dimensional flow.
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Figure 21: The geometry and boundary conditions for the deforming diffuser FSI problem. The right-angles indicated in the
solid domain apply to the undeformed reference state.

We start by defining the geometry of the problem with reference to Figure 21 and later provide the
actual values for the geometrical parameters that are used for the numerical results. Let y = F(x) denote
the deformed shape of the wall for which the fluid and solid tractions balance exactly, and let ȳ = F0(x̄)
denote the shape of the wall in the reference (un-deformed) solid. The reference domain Ω̄ for the solid is
thus bounded on the top by the curve ȳ = F0(x̄), x̄ ∈ [0, 1]. The sides of Ω̄ are straight lines which meet the
two ends of the reference curve ȳ = F0(x̄) at right angles. The bottom boundary of Ω̄ is defined by the cubic
Hermite polynomial ȳ = B0(x̄) that passes through the points (0, ya) and (xc, yc) and meets the adjacent
sides at right angles. The solid reference domain is chosen so that all corners are right angles. This, together
with the choice of boundary conditions given below, means that potential corner singularities in the solid
solution are avoided.

The fluid domain Ω is bounded by straight lines on the left and top and by y = F(x) on the bottom. The
boundary curve on the right-hand side of Ω is defined as a smoothed version of the piecewise linear curve
that joins the three points (1,F(1)), (xd, ye) and (xd, yd), where ye = F(1)− (xd − 1)/F ′(1). The smoothed
curve is defined using the integral of hyperbolic tangent functions (see [41] for full details). We call this
smooth (C∞) representation of a piecewise linear curve a smoothed polygon. The choice of this boundary
curve is not particularly important since it does not significantly affect the results, provided the curve is
sufficiently smooth.

The boundary conditions on the solid are taken as slip-wall on the left and right, and a displacement
boundary condition (ū = 0) on the bottom. The boundary conditions on the fluid are taken as steady
supersonic inflow on the left with (ρ, u, v, p) = (ρ0, u0, 0, p0) (all variables given), supersonic inflow on the
top (all variables set to the exact solution), and supersonic outflow on the right (all variables extrapolated
to second order). The interface conditions in (3) are imposed on the expanding wall, y = F(x).

A semi-analytic solution to the deforming diffuser problem can be determined as follows. Given the fluid
inflow conditions (ρ0, u0, 0, p0) and (the to be determined) interface curve, y = F(x), the solution in the
fluid domain can by found using the method of characteristics and the well-known Prandtl-Meyer function
(see for example [22] or [28] for further details). In particular, this solution gives an analytic expression for
the fluid pressure on the interface as a function of the interface shape which we denote by p = P(x,F(x)).
This relationship between the fluid pressure and the shape of the interface provides a nonlinear boundary
condition for the solid in Ω̄. This boundary condition is

n̄(x̄) · σ̄(x̄) = −(P(x̄ + ū,F(x̄ + ū)) − p0)n(x̄ + ū), for x̄ = (x̄,F0(x̄)) with x̄ ∈ (0, 1). (45)
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Here n̄ is the normal to the solid reference domain (i.e. the normal to the curve ȳ = F0(x̄)) while n(x̄+ ū) is
the normal to the deformed fluid domain (i.e. the normal to the curve y = F(x)). We now have a well-defined
problem for the solid in Ω̄ consisting of the equations of steady elasticity with the boundary condition in (45)
on ȳ = F0(x̄) and the boundary conditions shown in Figure 21 on the remaining sides.

The boundary-value problem defined for the solid is solved numerically for the components of displacement
using a second-order accurate (centered) finite-difference scheme. The equations are nonlinear due to the
boundary condition in (45), and a method of iteration is needed to solve them. Using a provisional choice for
the shape of the interface in (45), the (linear) equations can be solved for the components of displacement,
which are then used to update the shape of the interface. Repeating this procedure defines a simple fixed-
point iteration which converges rapidly. The converged solution for the solid gives a discrete approximation
for the interface curve, y = F(x), and this curve, in turn, specifies the solution in the fluid domain. We solve
the boundary-value problem for the solid on a grid with 1280 × 512 points. This fine-grid solution for the
solid domain, together with the analytic Prandtl-Meyer solution in the fluid domain, is taken as the exact

solution of the deforming diffuser problem.
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(0, yb)

(0, ya)
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|σ̄|
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Figure 22: Left: Composite grid G
(4)
dd

for the deforming diffuser problem showing the deformed grid in the lower solid domain.

Right: computed solution on grid G
(16)
dd

showing contours of the fluid pressure and norm of the solid stress tensor.

We now define the actual geometry and parameters used in the numerical computations. The reference
(un-deformed) interface curve is taken as

ȳ = F0(x̄) =
m0 + m1

2
(x̄ − x0) +

m1 − m0

2β
log(2 cosh(β(x̄ − x0))) (46)

for 0 < x̄ < 1, where the initial and final slopes are m0 = 0 and m1 = −0.2, respectively, and x0 = .5
and β = 10.0. The thickness of the solid domain is taken to be hs = 0.4 which we use to define ya = −hs,
xc = 1 + m1hs/

√
1 + m2

1 and yc = F0(1) − hs/
√

1 + m2
1. The parameters that define the vertices of the

fluid domain are taken to be yb = 0.5, xd = 1.075 and yd = 0.5. The parameters that define the gas flowing
into the fluid domain are ρ0 = 1.4, u0 = 2, p0 = 1 and γ = 1.4, which corresponds to a supersonic flow with
Mach number equal to 2. For the solid we use ρ̄ = λ = µ = 10.

The composite grid for the deforming diffuser FSI problem is shown in Figure 22. Let G(j)
dd denote the

composite grid of resolution factor j which has a grid spacing approximately equal to ∆s(j) = 1/(10j).
The grid for the solid domain is defined by linear transfinite interpolation between the top and bottom
boundary curves for Ω̄. The overlapping grid for the fluid domain consists of three component grids: a
(deforming) hyperbolic grid with fixed normal distance of 0.1 for the region next to the interface, a (static)
smoothed-polygon grid of normal distance 0.1 for the right end, and a (static) background Cartesian grid.
The hyperbolic grid is generated with the hyperbolic grid generator as discussed Section 5.3. The smoothed-
polygon grid is determined by extending normals from the (previously defined) smoothed-polygon curve for
the right boundary.
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The initial conditions for the computations are taken from the exact (semi-analytic) solution and we
integrate the equations to t = 1. Note that time-dependent equations are solved in both the fluid and solid
domains using our FSI-DCG approach, and no attempt is made to integrate to within a (small) specified
tolerance of steady state as this could take an impractically long time. Figure 22 shows shaded contours of

the computed solution at t = 1 on grid G(16)
dd . The pressure of the gas decreases as it expands around the

wall, and the straight contour lines indicate a simple-wave solution in agreement with the exact solution.
The decreased pressure in the gas downstream of the bend in the wall results in an upward deflection of the
fluid-solid interface. This upward deflection from the undeformed reference state creates a non-zero stress
field in the solid as shown in the figure.

The maximum errors at t = 1 are given in Figures 23 and 24 for two cases. The high-order Godunov
based method for the fluid domain has a slope-limiter which can locally reduce the order of accuracy of the
scheme in certain situations, and we present results with the limiter turned off and on. Figure 24 gives the
max-norm convergence rates for the case when the slope-limiter is turned off. We note that the convergence
rates are close to 2 for all of the fluid variables. The convergence rates for the velocity and stress in the
solid are also 2, approximately, while the displacement appears to be converging at a rate somewhat higher
than 2. Figure 24 shows the convergence rates when the slope-limiter is turned on, and the results indicate a
lower rate of convergence for the fluid variables as expected. More refined studies of the fluid domain alone
indicate a likely convergence rate of 4/3 instead of 2 when the slope-limiter is on.
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Figure 23: Deforming diffuser convergence results. Maximum-norm errors at t = 1.0 with the slope-limiter turned off in the
fluid solver.
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Figure 24: Deforming diffuser convergence results. Maximum-norm errors at t = 1.0 with the slope-limiter turned on in the
fluid solver. The use of the slope-limiter reduces the convergence rates compared to the results with no limiter in Figure 23.

6.4. An elastic shock impacting a deformable fluid cylinder

The computations in this section evaluate the behavior of the FSI-DCG scheme for the simulation of an
elastic shock impacting a fluid-filled deformable cylinder. The computation is performed for three different
values of the solid density to demonstrate the stability of the interface approximation based on the fluid-
solid Riemann problem for a range of impedance ratios and for a fully two-dimensional problem. The
geometry of the problem, as shown in Figure 25, consists of a fluid-filled cylindrical cavity inside of a solid
square. The cavity is centered at the origin and has a radius equal to 1, while the solid square is located
on [−2.5, 2.5] × [−2.5, 2.5]. An elastic p-wave shock, initially at x = −1.5, travels from left to right, and
the fluid inside the cavity is uniform initially. The boundary conditions for the solid are taken as Dirichlet
on the left (all variables set to the traveling p-wave solution), slip walls on the top and bottom, and a
displacement boundary on the right (ū = 0). The interface conditions in (3) are applied at the fluid-solid
interface. We note that fluid-solid interfaces can experience Rayleigh-Taylor like instabilities when a light
material accelerates a heavy material [42, 43]. For the case considered here we choose a relatively weak
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elastic shock and integrate over a moderate time interval in order to avoid issues with the growth of true
physical instabilities.

p-wave shock

fluid

solid

−2.5 2.5
−2.5

2.5

Figure 25: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G
(1)
dc

showing the two solid grids and the two fluid grids.

Let G(j)
dc denote the composite grid for the deforming cylinder problem with grid spacing approximately

equal to ∆s(j) = 1/(10j), see Figure 25. The outer solid domain is covered by a Cartesian grid on the square
[−2.5, 2.5] × [−2.5, 2.5] and a (static) hyperbolic grid of width 4∆s(j) next to the interface. The inner fluid
domain is covered by a Cartesian grid for the square [−1.5, 1.5] × [−1.5, 1.5] and a (deformable) hyperbolic
grid of width 4∆s(j) adjacent the interface.

The material parameters for the solid are ρ̄ = λ = µ = ρr, where ρr is the initial solid-fluid density
ratio, taken to be ρr = 0.1, 1 and 10 for the three cases considered. The initial conditions for the solid
are taken as a traveling p-wave shock propagating in the positive x-direction. The elastic shock is described
by (C.6)–(C.8) with κ

p = [1, 0]T , αp = 0.1 and αs = 0, but then shifted so that the jump lies at x = −1.5
initially. The fluid is initially at rest with ρ = 1 and p = 1/γ, where γ = 1.4.

Figures 26–28 show shaded contours of the stress-norm |σ̄| =
√

σ̄2
11 + 2σ̄2

12 + σ̄2
22 in the solid and ρ in

the fluid for the three cases at times t = 0, 0.5 and 1.0. The solutions shown in the figure were computed on

the grid G(32)
dc which has a total of 3.5 × 106 grid points approximately. Since the wave speeds in the solid

are the same for all three cases, the incident p-wave travels the same distance for each case. The outermost
reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for ρr = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
suffers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, ρr = 0.1 and ρr = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
is used. In contrast, the calculations presented here use the interface approximation based on the fluid-solid
Riemann problem and no numerical instability is observed.

To estimate the accuracy of the computed solution, we solve the problem on a sequence of grids of
increasing resolution. Given solutions on three grids of increasing resolution, a posteriori estimates of the
error and convergence rates can be computed using the procedure described in [32]. Estimated L1-norm
errors and convergence rates are given in Figure 29 for the medium-density solid case ρr = 1 (similar results

are obtained for the light and heavy cases). The rates are computed using the grids G(4)
dc , G(8)

dc and G(64)
dc .

Having the last grid significantly finer than the previous grids generally provides better estimated convergence
rates for wave propagation problems with linear discontinuities in which solutions converge slowly, as is the

case here. As seen from the figure, convergence rates of approximately 0.7 for E(1)
v̄ and E(1)

σ̄
are reasonably

close to the expected value of 2/3. The convergence rates for the fluid variables of approximately 0.87 are
somewhat less than the expected value of 1 for an isolated fluid calculation, but this is not unexpected here
given that the fluid solution is strongly driven by the shocks in the solid which are converging at a rate
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Figure 26: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the norm
of the solid stress, |σ̄|, in the solid domain. Results are shown for the light solid, ρr = 0.1, at times t = 0.5, 1.0 and 1.5.
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Figure 27: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the medium solid, ρr = 1.0, at times t = 0.5, 1.0 and 1.5.
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Figure 28: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the heavy solid, ρr = 10., at times t = 0.5, 1.0 and 1.5.

near 0.7.

6.5. A shock impacting two deformable sticks

In this section, we consider the simulation of a fluid shock impacting two deformable sticks as shown in
Figure 31. The main purpose of this computation is to demonstrate the ability of the FSI-DCG approach
to treat problems with large displacements while retaining high-quality grids. We recognize that the use of
a linear elastic model for the solids in this simulation is somewhat questionable from a physical standpoint
since this solid model does not properly treat large strains or rotations, but this does not detract from the
main purpose of this calculation.

The geometry of the problem consists of the large rectangular domain R = [−5, 20]× [−10, 10] with two
embedded solid sticks. Each stick is a smoothed-polygon approximation to the rectangular domain of width
0.5 and height 4. The lower stick is centered at (0,−2.1) and defines the solid domain Ω̄1 ≈ [−.25, .25] ×
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Figure 29: Estimated L1-norm errors and converge rates for the elastic shock hitting a fluid cavity, medium-density solid,
ρr = 1.0. Note that the grid spacing on the finest grid is 8 times smaller than the previous resolution.

[−4.1,−.1]. The upper stick is centered at (0, 2.1) and defines the domain Ω̄2 ≈ [−.25, .25] × [.1, 4.1]. The

fluid domain at time zero is then Ω(0) = R− Ω̄1 − Ω̄2. Let G(j)
ds denote the composite grid for this geometry

with ∆s(j) = 1/(10j), approximately. Figure 30 shows closeups of the grid G(4)
ds at three different times

during the calculation. The grids next to the interface are hyperbolic grids with normal width 5∆s(j) for
the fluid domain and width 3∆s(j) for the solid domains. The grids in the solid are shown adjusted for the
displacement. Only the two green fluid-interface grids deform over time.

The initial conditions in the fluid correspond to a planar shock, initially at x = −1, traveling to the right
with a shock Mach number equal to 2. The state ahead of the shock is given by [ρ, v1, v2, p] = [1.4, 0, 0., 1]
and the state behind the shock by [3.73333, 1.25, 0., 4.5]. The ratio of specific heats in the fluid is γ = 1.4.
The material properties of the lower stick are ρ̄ = µ = λ = 25 and those of the (lighter) upper stick are
ρ̄ = µ = λ = 10. The boundary conditions on the rectangular fluid domain are supersonic inflow on the left
side (all variables given by the state behind the shock), slip walls on the top and bottom, and supersonic
outflow on the right (all variables extrapolated).

t = 1 t = 5 t = 11

Figure 30: Closeup of the composite grids G
(4)
ds

for the deformable sticks at times t = 1, 5 and 11. The two deformable sticks
move apart after being impacted by a fluid shock. The green curvilinear grids next to the interface are regenerated at each
time step with the hyperbolic grid generator. The red grids in the solid domains are shown adjusted for the displacement. The
grids remain smooth and of high quality throughout the simulation.

Figure 31 shows the solution of the FSI problem at different times from the computation using the grid

G(8)
ds . Note that the region shown in the figures has been cropped from the full rectangular domain R. The

behavior of the fluid is displayed as numerically generated schlieren images. These gray-scale images are
computed from the magnitude of the gradient in the fluid density, and they highlight shocks and contact
discontinuities in the flow (see [22] for a definition of the numerical schlieren function). The plots also display
shaded contours of the horizontal component of the velocity, v̄1, in the solid domains (illustrating which
portions of the sticks are moving faster horizontally relative to other portions). The sticks are accelerated
after being impacted by the shock, and subsequently deform and rotate as they propagate downstream.
When the fluid shock first impacts the left edge of a stick it generates an elastic wave in the solid which
moves from left to right through the stick. This wave subsequently reflects off the right side of the stick and
at the same time creates a transmitted shock wave in the fluid. This elastic wave continues to bounce back
and forth within the solid, and each time it hits a fluid-solid interface it generates a new wave in the fluid.
A sequence of these waves in the fluid is particularly evident to the left of the lower stick in the solution at
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time t = 3 of Figure 31. By the final time shown in the figure (t = 11), the incident shock in the fluid has
traveled off the view and reflected shocks from the slip walls at the top and bottom of the fluid domain are
visible. A complex flow field in the vicinity of the sticks is seen consisting of multiple reflected shocks and
fluid roll-ups.

t = 1

0.38

1.0

v̄1

t = 2

0.73

1.25

v̄1

t = 3

0.81

1.30

v̄1

t = 5

0.91

1.38

v̄1

t = 8

0.89

1.34

v̄1

t = 11

0.94

1.50

v̄1

Figure 31: A shock hitting two elastic sticks showing the solution at times t = 1, 2, 3, 5, 8 and 11. The solution in the
fluid domain is shown as a numerical schlieren image while the horizontal velocity v̄1 is shown in the solids. The solution was

computed on grid G
(8)
ds

which has 3.3 million grid points. Note that the bounds on the contour levels change with time.

The performance of the FSI-DCG scheme for the computation shown in Figure 31 is presented in Fig-
ure 32. The largest percentage of the total run time (73%) was spent in advancing the fluid equations, as
expected, since the majority of grid points belong to the fluid grids. The time spent advancing the solution
in solid domains was less than 1%. In terms of CPU time per grid point in the respective domains, the cost
to advance the solution in the solid domains, 1.3µs/step, was about 45% of the cost to advance the solution
in the fluid domain, 2.9µs/step (including grid generation). About 23% of the time was spent moving and
regenerating the grids in the fluid domain. We note that significant optimizations could be made to the grid
generation stage but we leave this to future work.

Figure 33 compares the solution from simulations on a coarse grid G(4)
ds (0.83×106 grid points), a medium

resolution grid G(8)
ds (3.3×106 grid points) and fine grid G(16)

ds (13.2×106 grid points). The finer grids produce
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Deforming Sticks

s/step % CPU

advance fluid (3.2M pts) 6.8 73

advance solids (.03M pts) .04 .4

grid generation 2.2 23

interfaces .07 .7

other .29 2.9

total 9.4 100

Figure 32: Computational performance of FSI-DCG scheme for the deforming stick problem shown in Figure 31: CPU time
(in seconds) for various parts of the algorithm and their percentages of the total CPU time per step. The total number of grid
points was approximately 3.3 million with the majority belonging to the fluid domain. The computation was run on a single
core of a 4-core Xeon 2.3 GHz processor.

increasingly sharper and more detailed features but the the overall structure of the flow compares very well
between the different runs.

7. Conclusions

We have described a mixed Eulerian-Lagrangian technique for the solution of fluid-structure interaction
(FSI) problems. This general and flexible approach uses deforming composite grids (DCG) to represent fluid-
solid interfaces with boundary-conforming grids that track the interfaces as they evolve. The interface grids
move through static background grids and remain smooth and of high quality even under large displacements
and rotations of the solid domains. The FSI-DCG approach was developed and verified for a system consisting
of inviscid compressible fluids described by the Euler equations coupled to solids modeled by the (linear)
elastic wave equation. At an interface, the normal components of the fluid and solid velocities must match,
along with the fluid and solid tractions. An interface approximation based on the solution to a fluid-solid
Riemann (FSR) problem has been developed to couple the solutions at an interface. This FSR approximation
is accurate and stable for a wide range of regimes, including the difficult case of light solids when the standard
velocity-from-solid/stress-from-fluid approximation fails.

The FSI-DCG time-stepping scheme and interface approximations have been described in detail and
carefully validated for the one-dimensional elastic piston problem. The extension of the scheme to prob-
lems in two space dimensions has also been described. The two-dimensional FSI-DCG scheme has been
carefully verified on three problems with known solutions: the two-dimensional elastic-piston problem, the
superseismic-shock problem and a deforming-diffuser problem. For the deforming-diffuser problem, which
has a smooth solution, and the smoothly receding elastic piston, the scheme was shown to be second-order
accurate in the max-norm. For the problems which contain discontinuities, the expected rates of convergence
were also obtained. Simulations were performed of an elastic shock wave impacting a fluid-filled cavity to
demonstrate that the multi-dimensional algorithm remains stable even for light solids. A self-convergence
grid refinement study for this case showed the solutions to be converging at the expected rates. A final
example of a shock impacting two deformable sticks illustrated the application of the method to a problem
where the solids undergo large translational motions through the fluid domain.

There are many avenues to follow in future work. The FSI-DCG approach described here can be extended
to other fluid models including viscous fluids and incompressible fluids as well as more general solid models
that can treat large rotations and deformations. In addition we will extend the current numerical framework
to three space dimensions, to handle non-matching interface grids and adaptive mesh refinement, as well as
to run in parallel on distributed memory computers.

Appendix A. Solution of the receding elastic-piston problem

A smooth exact solution to the elastic-piston problem can be derived for the case of a receding piston.
This is a good test problem for showing the accuracy of our numerical scheme when the solution is smooth.
The x-t diagram was shown previously in Figure 1. At t = 0, the fluid is at rest with constant initial
conditions ρ(x, 0) = ρ0, v(x, 0) = 0, p(x, 0) = p0 and a(x, 0) = a0 =

√
γp0/ρ0. Assuming a given interface

motion, x = G(t), the solution in the fluid region G(t) < x < a0t is given by the method of characteristics,

v(x, t) = Ġ(τ(x, t)),
a(x, t)

a0
= 1 +

γ − 1

2

(
v(x, t)

a0

)
,

p(x, t)

p0
=

(
ρ(x, t)

ρ0

)γ

=

(
a(x, t)

a0

)2γ/(γ−1)

, (A.1)
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0.88

1.43

v̄1
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v̄1

Figure 33: A shock hitting two elastic sticks. A comparision of the solution at t = 9 on the coarse grid G
(4)
ds

(top) medium

resolution grid G
(8)
ds

(middle) and fine grid G
(16)
ds

(bottom).

where τ = τ(x, t) satisfies

x − G(τ) =

[
a0 +

γ + 1

2
Ġ(τ)

]
(t − τ). (A.2)

The solution in the fluid region for x > a0t is simply ρ(x, t) = ρ0, v(x, t) = 0 and p(x, t) = p0. (For further
details see the discussion in [22].) We have assumed that the interface moves so that no shocks form which
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will be the case if Ġ ≤ 0 and G̈ ≤ 0.
The solution to the elasticity equations with initial conditions ū(x̄, 0) = ū0(x̄) and ∂tū(x̄, 0) = v̄0(x̄) and

boundary condition ū(0, t) = G(t) follows from the d’Alembert solution,

ū(x̄, t) = f(x̄ − cpt) + g(x̄ + cpt), (A.3)

f(ξ) =
1

2

[
ū0(ξ) − c−1

p

∫ ξ

0

v̄0(s)ds
]

for ξ < 0, (A.4)

g(ξ) =

{
1
2

[
ū0(ξ) + c−1

p

∫ ξ

0
v̄0(s)ds

]
for ξ < 0,

G(ξ/cp) − f(−ξ) for ξ > 0.
(A.5)

By imposing the interface traction condition, ρ̄c2
p∂x̄ū(0, t) = −p(G(t), t) we arrive at the following equation

for Ġ(t),

p0

ρ̄c2
p

[
1 +

γ − 1

2a0
Ġ(t)

]2γ/(γ−1)

+
Ġ(t)

cp
= −

[
ū′

0(−cpt) −
1

cp
v̄0(−cpt)

]
, for t > 0. (A.6)

Given any appropriate initial conditions for the fluid and solid, (A.6) can be solved as a nonlinear ODE
to determine G(t). We proceed, however, in a different manner and first choose a form for G(t) and then
determine initial conditions ū0(x̄) and v̄0(x̄) in the solid to be consistent with (A.6). In particular, we choose

G(t) = −Ga

q
tq, (A.7)

for some positive integer q and amplitude parameter Ga. Given G(t), there are many possible choices for
ū0(x̄) and v̄0(x̄) that will satisfy (A.6). Since we are looking for a smooth exact solution, it is natural to
require the initial conditions to satisfy the fluid-solid interface conditions (which they do not necessarily need
to satisfy). This gives the choice

ū0(x̄) = − p0

ρ̄0c2
p

∫ x̄

0

[
1 +

γ − 1

2a0
Ġ(−s/cp)

]2γ/(γ−1)

ds, v̄0(x̄) = Ġ(−x̄/cp), for x̄ < 0. (A.8)

In summary, given an interface motion G(t) from (A.7), we choose initial conditions in the solid from (A.8),
and then the solution in the solid is given by (A.3)–(A.5) and the solution in the fluid is given by (A.1)–(A.2).

Appendix B. Solution of the elastic-piston shock-tube problem

An exact solution to the elastic-piston problem can be derived for the situation of a fluid shock hitting an
initially motionless piston. This solution is used in Section 4.3.2 to evaluate our numerical scheme. The x-t
diagram for the problem is shown in Figure B.34. The solution to this problem is a simple extension of the
fluid-solid Riemann solution given in Section 4.1. An incident shock moves from right to left and impacts
the solid at t = ti. The shock reflects, causes the interface to move, and in turn sets up an elastic shock wave

in the solid. The initial conditions are

[v̄(x̄, 0), σ̄(x̄, 0)] = [0, 0], for x̄ < 0, (B.1)

[ρ(x, 0), v(x, 0), p(x, 0)] =

{
[ρ0, 0, p0], for 0 < x < x0,

[ρ1, v1, p1], for x > x0,
(B.2)

where the initial fluid states are chosen to correspond to a shock moving to the left with speed S0. At time
t = ti = x0/S0 the incident shock impacts the solid. The solution at this time defines a fluid-solid Riemann
problem with the constant solid state [v̄0 = 0, σ̄0 = 0] next to the fluid state [ρ1, v1, p1]. The solution to this
problem is given in Section 4.1.2.

Appendix C. Solution of the superseismic-shock problem

Here we provide the analytic solution to the superseismic shock problem discussed in Section 6.2. The
structure of the solution was shown earlier in Figure 17. (Note that there are also solutions where the s-wave
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Figure B.34: The x-t diagram for the elastic shock tube. An incident shock moves from right to left and impacts the solid at
t = ti. The impact causes the interface to move and sets up an elastic shock wave in the solid. The reflected wave in the fluid
may be a shock or an expansion fan.

leads the p-wave and where the s- and p-waves lie in the lower right-half plane.) The input parameters to the
problem are the solid material parameters ρ̄, µ and λ, the speed of the structure S, the upstream fluid state
w0 = [ρ0, v0

1 , 0, p0] and the ratio of specific heats in the fluid γ. Assume, to begin with, that the shock angle
ξ is known (even though ξ will normally have to be computed as a solution to the equations given below).
Define the angle β = π/2 − ξ, the upstream speed of sound a0 =

√
γp0/ρ0 and the upstream Mach number

M0 = (S − v0
1)/a0. The post-shock fluid state is given by the oblique shock conditions (see for example

Liepmann and Roshko [44]),

p1 − p0

p0
=

2γ

γ + 1
[M2

0 sin2 β − 1], ρ1 = ρ0 (γ + 1)M2
0 sin2 β

(γ − 1)M2
0 sin2 β + 2

, (C.1)

v1
1 =

[
v1
1

v1
2

]
=

[
S

0

]
+ (v0

1 − S)
cos β

cos(β − θ)

[
cos θ

sin θ

]
, (C.2)

where the angle of deflection of the interface, θ, is related to ξ by

tan θ = 2 cot β

{
M2

0 sin2 β − 1

M2
0 (γ + cos 2β) + 2

}
. (C.3)

Define the wave-vector, κ, eigenvector, a, and angle η for each of the two traveling waves in the solid,

κp
1 = cos ηp = cp/S, κp

2 = − sin(ηp), κs
1 = cos ηs = cs/S, κs

2 = − sin(ηs), (C.4)

κ
p =

[
κp

1

κp
2

]
, κ

s =

[
κs

1

κs
2

]
, ap =

[
κp

1

κp
2

]
, as =

[
−κs

2

κs
1

]
. (C.5)

In terms of the wave strengths αp and αs (yet to be determined), the displacements and velocities in the
solid states w̄0, w̄1 and w̄2 are

ū0 = 0, ū1 = −αp(κ
p · x̄ − cpt)a

p, ū2 = ū1 − αs(κ
s · x̄ − cst)a

s, (C.6)

v̄0 = 0, v̄1 = αpcpa
p, v̄2 = v̄1 + αscsa

s. (C.7)

The three stress states of the solid can be written as

σ̄
0 = 0, σ̄

1 = σ̄
p, σ̄

2 = σ̄
1 + σ̄

s, (C.8)

where the components of the tensors σ̄
p and σ̄

s are given by

σ̄p
ij =

[
λ + 2µ(κp

1)
2 2µκp

1κ
p
2

2µκp
1κ

p
2 λ + 2µ(κp

2)
2

]
(−αp), σ̄s

ij =

[
−2µκs

1κ
s
2 µ((κs

1)
2 − (κs

2)
2)

µ((κs
1)

2 − (κs
2)

2) 2µκs
1κ

s
2

]
(−αs). (C.9)
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The wave strengths αp and αs are then solutions to traction interface condition,

σ̄
2 n̄ = −(p1 − p0)n. (C.10)

where the normal vectors used for the solid and fluid are

n̄ =

[
0

1

]
and n =

[
− sin θ

cos θ

]
.

Note that the normal for the solid is taken from the reference state x̄ as is often done for linear elasticity.
Given αp and αs from the solution to (C.10) we then know the solid states. Supposing the value of ξ we
started with was correct, then the velocity interface condition

tan θ =
v̄2
2

v̄2
1

(C.11)

will also be satisfied. Otherwise one can use a root-finding procedure to determine a value for ξ that satisfies
the above relationships.
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