Turbulent flow past two spheres (vorticity) (Cgins)

Turbulent flow past two spheres (vorticity) (Cgins). SSLES turbulence model.

Cgins: Incompressible Flow Solver

  1. Efficient split-step scheme.
  2. 2nd-order and 4th-order accurate approximations (DNS and LES).
  3. support for moving rigid-bodies.
  4. heat transfer (Boussinesq approximation).
  5. time stepping schemes:
    1. approximate factored scheme,
    2. predictor corrector explicit and semi-implicit (time accurate)
    3. pseudo steady-state (efficient line solver), full implicit.
    4. full implicit.
  6. Pressure equation can be solved with multigrid or any PETSc solvers (e.g. Krylov).
  7. SSLES turbulence model.



Cgins related publications and talks

  1. W. D. Henshaw.
    Solving fluid structure interaction problems on overlapping grids, 2012.
    Talk, MIT Distinguished Speaker Series, Massachusetts Institute of Technology, Cambridge Massachusetts, September 20, 2012, publications/mit12.pdf.
  2. T.M. Broering, Y Lian, and W.D. Henshaw.
    Numerical investigation of energy extraction in a tandem flapping wing configuration.
    AIAA Journal, 50(11):2295-2307, 2012.
  3. Muheng Zhang, Yongsheng Lian, Cindy Harnett, and Ellen Brehob.
    Investigation of hydrodynamic focusing in a microfluidic Coulter counter device.
    ASME J. of Biofluidmechanical Engineering, (accepted), 2012.
  4. K.K. Chand and M.A. Singer.
    Verification and validation of CgWind: a high-order accurate simulation tool for wind engineering.
    In 13th International Conference on Wind Engineering (ICWE13), 2011.
    (8 pages) publications/cgWindChandSinger2011.pdf.
  5. M. A. Singer and S. L. Wang.
    Modeling blood flow in a tilted inferior Vena Cava filter: Does tilt adversely affect hemodynamics?
    Journal of Vascular and Interventional Radiology, 22:229-235, 2011.
  6. J. E. Guerrero.
    Aerodynamic performance of cambered heaving airfoils.
    AIAA Journal, 48(11):2694-2698, 2010.
  7. D. D. J. Chandar and M. Damodaran.
    Numerical study of the free flight characteristics of a flapping wing in low Reynolds numbers.
    AIAA J. Aircraft, 47(1):141-150, 2010.
  8. S. L. Wang and M. A. Singer.
    Toward an optimal position for inferior Vena Cava filters: Computational modeling of the impact of renal vein inflow with Celect and Trapease filters.
    Journal of Vascular and Interventional Radiology, 21:367-374, 2010.
  9. M. A. Singer, S. L. Wang, and D. P. Diachin.
    Design optimization of Vena Cava filters: an application to dual filtration devices.
    Journal of Biomechanical Engineering, 132(10):10 pages, 2010.
  10. M. A. Singer, W. D. Henshaw, and S. L. Wang.
    Computational modeling of blood flow in the Trapease inferior Vena Cava filter.
    Journal of Vascular and Interventional Radiology, 20:S136-S137, 2009.
  11. William D. Henshaw and Kyle K. Chand.
    A composite grid solver for conjugate heat transfer in fluid-structure systems.
    J. Comput. Phys., 228:3708-3741, 2009.
  12. D. D. J. Chandar and M. Damodaran.
    Computational study of unsteady low-Reynolds-number airfoil aerodynamics using moving overlapping meshes.
    AIAA Journal, 46(2):429-438, 2008.
  13. M. M. Hafez, editor.
    A Split-Step Scheme for the Incompressible Navier-Stokes Equations. World Scientific, 2003.
  14. P. Fast and W. D. Henshaw.
    Time-accurate computation of viscous flow around deforming bodies using overset grids.
    AIAA paper 2001-2604, American Institute of Aeronautics and Astronautics, 2001.
  15. William D. Henshaw.
    A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids.
    J. Comput. Phys., 113(1):13-25, July 1994.
  16. William D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    A fourth-order accurate difference approximation for the incompressible Navier-Stokes equations.
    Comput. Fluids, 23(4):575-593, 1994.
  17. William D. Henshaw, L. G. M. Reyna, and J. A. Zufiria.
    Compressible Navier-Stokes computations for slider air-bearings.
    Journal of Tribology, 113:73-79, 1991.