A++/P++4 — Quick Reference Manual
(version 0.7.5)

Daniel Quinlan
Lawrence Livermore National Laboratory
L-560
Livermore, CA 94550
925-423-2668 (office)
025-422-6287 (fax)
dquinlan@]lnl.gov
Quinlan’s Web Page: http://www.llnl.gov/casc/people/dquinlan
A++/P++ Web Page http://www.lInl.gov/casc/Overture/ A++P++
A++/P++ Manual (postscript version)
A++/P++ Quick Reference Manual (postscript version)
LACC Number: LA-CC-96-1
LAUR Number: LA-UR-95-3273

August 16, 2000

August 16, 2000

Chapter 1

Reference

1.1 Legend

type double, float, or int

Variables used in examples below

i,J,k,! integers used as scalar index variables
Span_l,Span_J,Span_K,Span_L objects of type Range

1,J,K,L objects of type Index
List_l,List_J,List_K,List_L objects of type intArray

A,B,C typeArray variables

Mask an intArray variable

n,m,o,p any positive integer
Fortran_Array_Pointer pointer to a Fortran array

X variable of type

axis dimension 0-3 of the 4D typeArray

1.2 Debugging A++P++ Code

1.2.1 Turning On Bounds Checking
Bounds Checking in A++P++ must be turned on and is OFF by default.

Turning On Bounds Checking For All But Scalar Indexing
Bounds checking in A4++P+4 must be turned on and is OFF by default.

Index::setBoundsCheck (On); Turns ON array bounds checking!
Index::setBoundsCheck (Off); Turns OFF array bounds checking!

Turning On Bounds Checking For Scalar Indexing

Scalar bounds checking in A4++P+-+ must be set at compile time. Bounds checking is OFF
by default. It may be set on the compile command line or at the top of each program file
(before #include<A++.h>).

CC-DBOUNDS_CHECK other options Turns on scalar index bounds checking.
#define BOUNDS_CHECK Turns on scalar index bounds checking in file.

1.2.2 Using dbx with A4+

dbx supports calling functions and with the correct version of dbx that understands C++
name mangling, member functions of the A++ array objects may be called with the
following example syntax:

call A.display() dbx calls the display member function for an A++P++ array A

1.2.3 Mixing C++4 streams and C printf

Mixing of C++ "cout <<” like I/O syntax with C stype ”printf” I/O syntax will generate
strange behavior in the ordering of the user’s I/O messages. To fix this insert the following
call to the I/O Streams library of C++ at the start of your main program.

ios::sync_with_stdio(); Synchronize C++ and C I/O subsystems!

1.3 Range Objects

1.3.1 Constructors

Note: The base must be less than or equal to the bound to define a valid span of an array, if
base > bound then the range is considered null.

Range Span_K (Xbase,+bound),tstride); Range object Span_K from base, to bound, by stride
Range Span_|; Range object which is null
Range Span_J = Span_l; Span_J is a copy of Span_I (not an alias)

1.3.2 Operators

Span_J = Span_l; assignment operator

Span_l+n; builds new Range object with position of Span_l + n
n+Span_l; builds new Range object with position of Span_l + n
Span_l-n; builds new Range object with position of Span_l - n
n-Span_l; builds new Range object with position of Span_l - n

1.3.3 Access Functions

Span_l.getBase(); returns base of Span_|
Span_l.getBound(); returns bound of Span_I
Span_l.getStride(); returns bound of Span_I
Span_lLlength(); returns (bound-base)+1 for Span_|

1.4 Index Objects

1.4.1 Constructors

The stride in the examples below default to 1 (unit stride) if not specified. That we provide
an Index constructor which takes a Range object allows Range objects to be used where ever
Index objects are used (e.g. indexing operators).

Index K (tposition,count); Index object K references from position, for count elements, with default stride = 1
Index K (Zposition,count,stride); Index object K references from position, for count elements, with stride

Index I; Index which references all of any array object

Index I(=£i); Index with position=d=+i, count=1, stride=1

Index J = 1|; J is a copy of I (not an alias)

Index K = Span_l; Index K is built from a Range object, Span_K

1.4.2 Operators

I4n; new Index with position of Index I + n
n—+l; new Index with position of Index I + n
I-n; new Index with position of Index I - n
n-l; new Index with position of Index I - n
J=1 assignment operator

1.4.3 Access Functions

|.getBase(); returns base of |

|.getBound(); returns bound of |

|.getStride(); returns stride of |

I.length(); returns length of | (accounting for stride)

1.4.4 Display Functions

I.display(”label”); Prints Index values and all other internal data for I along with character string ”label” to sdtout

1.5 Array Objects

1.5.1 Constructors

A++ arrays are replicated on each processor in P++, while P4+ arrays are distributable
across processors using user defined distributions (not covered here). Note that the Range
objects can be used to build an A++ array, if used, they define the size and the base of the
array from the Range object provided for each dimension.

typeArray A; array object A (zero length array)
typeArray B = A; array B as a copy of A
typeArray C (n); 1D array C of length n

typeArray C (n,m); 2D array C of length n X m

typeArray C (n,m,0); 3D array C of length n x m x o

typeArray C (n,m,0,p); 4D array C of length n x m x o X p

typeArray C (Span.l); 1D array C of length of Span_I

typeArray C (Span_l,Span_J); 2D array C of length of Span_l x Span_J

typeArray C (Span_l,Span_J,Span_K); 3D array C of length of Span_l x Span_J x Span_K
typeArray C (Span_l,Span_J,Span_K,Span_L); 4D array C of length of Span_l X Span_J X Span_K x Span_L
A++ only

typeArray C (Fortran_Array_Pointer, n); 1D array C of length n using existing array

typeArray C (Fortran_Array_Pointer, n,m); 2D array C of length n X m using existing array
typeArray C (Fortran_Array_Pointer, n,m,0); 3D array C of length n X m X o using existing array
typeArray C (Fortran_Array_Pointer, n,m,o0,p); 4D array C of length n X m X o X p using existing array
typeArray C (Fortran_Array_Pointer, Span_I); 1D array C using existing data

typeArray C (Fortran_Array_Pointer, Span_l,Span_J); 2D array C using existing data

typeArray C (Fortran_Array_Pointer, Span_l,Span_J,Span_K); 3D array C using existing data

typeArray C (Fortran_Array_Pointer, Span_l,Span_J,Span_K,Span_L); 4D array C using existing data

P++ only

typeArray C (Fortran_Array_Pointer, n, Local_Size_n); 1D array C of length n using existing array
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n); 2D array C of length n X m using existing array
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o); 3D array C of length n X m X o using existing array
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o,

p, Local_Size_p); 4D array C of length n X m X o X p using existing array
P++ only
typeArray C (n, Partition); Use existing Partitioning_Type
typeArray C (m, n, Partition); Use existing Partitioning_Type

typeArray C
typeArray C

m, n, o, Partition); Use existing Partitioning_Type
m, n, o, p, Partition); Use existing Partitioning_Type

A~~~

1.5.2 Assignment Operators

A(1,J) = B(I-1,J+1); Set elements of A equal to elements of B
A =x; Set elements of A equal to x

1.5.3 Indexing Operators

Note that indexing support for Range objects is available because Index objects are
constructed from the Range objects and the resulting Index object is used.

Indexing operators for scalar indexing: denotes a scalar

A(i) Scalar indexing of a 1D array object

A(i.j) Scalar indexing of a 2D array object
A(ij.k) Scalar indexing of a 3D array object
A(ij.k,1) Scalar indexing of a 4D array object

Indexing operators for use with Index objects: denotes a typeArray

A(l) Index object indexing of a 1D array object
A(l,d) Index object indexing of a 2D array object
A(1,J,K) Index object indexing of a 3D array object
A(lLlJ.K,L) Index object indexing of a 4D array object

Indexing operators for use with Range objects: denotes a typeArray

A(Span.l) Range object indexing of a 1D array object
A(Span_l,Span_J) Range object indexing of a 2D array object
A(Span_l,Span_J,Span_K) Range object indexing of a 3D array object
A(Span._l,Span_J,Span_K,Span_L) Range object indexing of a 4D array object

Indexing operators for use with intArray objects: denotes a typeArray

A(Listl) intArray object indexing of a 1D array object
A(List_I,List_J) intArray object indexing of a 2D array object
A(Listl,List_J,List_K) intArray object indexing of a 3D array object
A(List_l,List_J,List_K,List_L) intArray object indexing of a 4D array object

1.5.4 Indirect Addressing

The subsection Indexing Operators (above) presents the use of intArrays to index A++
arrays (even other intArray objects). The value of the elements of the intArray are used to
define the relevant elements of the indexed object (view). It is often required to convert
between a mask returned by an relational operator and an intArray whose values represent
the non-zero index positions in the mask, however this conversion of a mask to an intArray
is currently supported only for 1D.

intArray Indirect_Address = Mask.indexMap() builds intArray object with values of non-zero index position in Mask
intArray | = (A == 5).indexMap() builds intArray I as a mapping (into A) of elements in A equal to 5

1.5.5 Arithmetic Operators

All arithmetic operators return a typeArray consistent with their input, no mixed type
operations are allowed presently. Casting operators will be added soon to permit mixed
operations. All operations are performed elementwise and the result returned in a separate
typeArray (unless one of the operands is a result from a previous expression in which case
the temporary operand is reused internally).

B+ C; Add B and C

B + x; Add B and x

x + C; Add x and C

B += C; Add C to B store result in B
B +=x; Add x to B store result in B
B-GC Subtract C from B

B - x; Subtract x from B

x - C; Subtract C from x

B-=C; Subtract C from B store result in B

B -=x; Subtract x from B store result in B
B * C; Multiply B and C

B * x; Multiply B and x

x * G Multiply x and C

B *= C; Multiply C and B store result in B
B *= x; Multiply x and B store result in B
B /G Divide B by C

B/ x; Divide B by x

x /G Divide x by C

B /=G Divide B by C store result in B

B /= x; Divide B by x store result in B

B % C; B Modulo C

B % x; B Modulo x

x % C; x Modulo C

B %= C; B Modulo C to store result in B

B %= x; B Modulo x store result in B

1.5.6 Relational Operators

All relational operators return an intArray, no mixed type operations are allowed presently.
All operations are performed elementwise and return conformable mask (intArray object).
Mask values are zero if the conditional test was false, and non-zero if operation was true.
See Indirect Addressing for conversion of zero/non-zero masks into intArrays for use with
indirect address indexing.

B; mask based on test for zero elements of B

B <G mask specifying elements of B < C

B < x; mask specifying elements of B < x

x < G mask specifying elements of C where x < C
B <= C; mask specifying elements of B <= C

B <= x; mask specifying elements of B <= x

x <= G; mask specifying elements of C where x <= C
B> G mask specifying elements of B > C

B > x; mask specifying elements of B > x

x > C; mask specifying elements of C where x > C
B >=C mask specifying elements of B >= C

B >=x; mask specifying elements of B >= x

x >= C; mask specifying elements of C where x >= C
B ==C; mask specifying elements of B == C

B == x; mask specifying elements of B == x

x == C; mask specifying elements of C where x == C
B!=¢C mask specifying elements of B! = C

B!=x; mask specifying elements of B ! = x

x!=C mask specifying elements of C where x ! = C
B && C; mask specifying elements of B && C

B && x; mask specifying elements of B && x

x && C; mask specifying elements of C where x && C
B C; mask specifying elements of B || C

B || x; mask specifying elements of B || x

x || G mask specifying elements of C where x || C

1.5.7 Min Max functions

These functions (except in the case of the single input reduction operations) return array
objects with an elementwise interpretation. Both "min” and ”max” represent reduction
operations in the case of a single array input. These functions thus return a scalar value
from the array input. In A4+ the operation is straightforward. In P4+ the reduction
operators return a scalar, but internally do the required message passing to force the same
scalar return value on all processors (assuming a data parallel model of execution).

min (A); return scalar minimum of all array elements
min (B,C); min elements of B and C

min (B,x); min elements of B and x

min (x,C); min elements of x and C

min (A,B,C); min elements of A,B and C

min (x,B,C); min elements of x,B and C

min (A,x,C); min elements of A,x and C

min (A,B,x); min elements of A,B and x

max (A); return scalar maximum of all array elements
max (B,C); max elements of B and C

max (B,x); max elements of B and x

max (x,C); max elements of x and C

max (A,B,C); max elements of A,B and C

max (x,B,C); max elements of x,B and C

max (A,x,C); max elements of A,x and C

max (A,B,x); max elements of A,B and x

1.5.8 Miscellaneous Functions

All functions return a typeArray consistent with their input, no mixed type operations are
allowed presently. Functions fmod and mod apply to double or float arrays and integer
arrays, respectively. Functions log, logl0, exp, sqrt, fabs, ceil, floor, cos, sin, tan, acos, asin,
atan, atan2, cosh, sinh, tanh, acosh, asinh, atanh; only apply to doubleArray and

float Array objects. Function abs applies to only intArray objects.

For P++ operation of reduction functions (?sum,” for example) see note on reduction
operators in P++ in previous subsection (Min Max functions).

fmod (B,C); B modulo C equivalent to operator B % C
fmod (B,x); B modulo x equivalent to operator B % x
fmod (x,C); x modulo C equivalent to operator x % C
mod (B,C); B modulo C equivalent to operator B % C
mod (B,x); B modulo C equivalent to operator B % x
mod (x,C) B modulo C equivalent to operator x % C
pow (B,C); B(i)°® for elements of B and C

B(i)* for elements of B and x

pow (x,C); z%@ for elements of x and C

sign (B,C); C with sign of B

sign (B,x); array with values of x but with sign of B
sign (x,C); C with sign of x

sum (B); sum of elements of B

log (B); log of elements of B

log10 (B); log10 of elements of B

exp (B); exp of elements of B

sqrt (B); sqrt of elements of B

fabs (B); fabs of elements of B

ceil (B); ceil of elements of B

floor (B); floor of elements of B

abs (B); abs of elements of B

cos (B); cosine of elements of B

sin (B); sine of elements of B

tan (B); tangent of elements of B

acos (B); arccosine of elements of B

asin (B); arcsine of elements of B

atan (B); arctangent of elements of B

atan2 (B,C); arctangent of elements of B/C

cosh (B); hyperbolic cosine of elements of B
sinh (B); hyperbolic sine of elements of B

tanh (B); hyperbolic tangent of elements of B
acosh (B); arc hyperbolic cosine of elements of B
asinh (B); arc hyperbolic sine of elements of B
atanh (B); arc hyperbolic tangent of elements of B

1.5.9 Replace functions

Replacement of elements is done for non-zero mask elements. Mask and input arrays must
be conformable. Since this feature of A++/P++ is redundent with the where statement
functionality, the replace member function may be devalued at a later date and then
removed from A++/P-++ sometime after that.

A.replace (Mask , B); replace elements in A with elements in B depending on value of Mask
A.replace (Mask , x); replace elements in A with scalar x depending on value of Mask
A.replace (x, B); replace elements in A with elements in B depending on value of x

(equivalent to if (x) A = Bj)

1.5.10 Array Type Conversion Functions

The conversion between array types is commonly represented by casting operators. However,
such casting operators could be called as part of automate conversion which can be
especially problematic to debug. To facilitate the conversion between types of arrays we
provide member functions that cast an array of one type to an array of another type
explicitly. These member functions can, for example, convert an array of type intArray to an
array of type floatArray. Or we can convert a floatArray to an intArray. As and example,
this mechanism simplifies the visualization of intArray objects using graphics functionality
only written for floatArray or doubleArray types. Future work implement casting operators
that make the conversion implicit.

A.convertTo_intArray(); return an intArray (convert typeArray A to an intArray

A.convertTo_floatArray();

A.convertTo_doubleArray();

1.5.11

return a floatArray (convert typeArray A to a floatArray
return a doubleArray (convert typeArray A to a doubleArray

User defined Bases

A++/P++ array object may have user defined bases in each array dimension. This allows
for array objects to have a base of 1 (as in FORTRAN), or any other positive or negative

value.

A.setBase(+n);
A.setBase(£n,axis);
setGlobalBase(+£n);
setGlobalBase(=£n,axis);

Set base to +n along all axes of A

Set base to £n along axis of A

Set base to +n along all axes for all future array objects
Set base to +n along axis for all future array objects

1.5.12 Indexing of Views

The base and bound of a view of an array object are dependent on the base and bound of
the Index or Range object used to build the view. Thus a view, A(l), of an array, A, is
another array object which carries with it the index space information about it’s view of the
subset of data in the original array, A.

1.5.13 Array Size functions

Array axis numbering starts at zero and ends with the max number of dimensions (a
constant MAX_ARRAY_DIMENSION stores this value) for the A++/P++ array objects
minus one. These provide access into the A++ objects and assume an A-++ object is being
used. An alternative method is defined to permit access to the same data if a raw pointer is
being used, this later method is required if a pointer to the array data is being passed to
FORTRAN. The access functions for this data have the names getRawBase(),
getRawBound(), getRawStride(), getRawDataSize().

A.getBase();
A.getBase(axis);
A.getRawBase(axis);
getGlobalBase();
getGlobalBase(axis);

A.getStride(axis);
A.getRawStride(axis);

A.getBound(axis);
A.getRawBound (axis);
A.getLength(axis);
A.getFullRange(axis);
A.dimension(axis);
A.elementCount();
A.numberOfDimensions();
A.isAView();
A.isNullArray();
A.isTemporary/();
A.rows();

A.cols();

Get base along all axes of A (bases must be equal)
Get base along axis of A

Get base along axis of A

Get base along all axes for all future array objects
Get base along axis for all future array objects

Get stride along axis of A
Get stride along axis of A
Get bound along axis of A
Get bound along axis of A

Get dimension (array size) of A along axis
return a Range object (base,bound,stride of the array)

Get dimension (array size) of A along axis (returns a Range object)

Get total array size of A

Get total number of dimensions of A

returns TRUE if A is a subArray (view) of another array object
returns TRUE if A is an array of size zero

returns TRUE if A is a result of an expression

Get number of rows of A (for 2D array objects)

Get number of cols of A (for 2D array objects)

1.5.14 Array Object Similarity test functions

Array axis numbering starts at zero and ends with the max number of dimensions (a
constant MAX_ARRAY_DIMENSION stores this value) for the A++/P++ array objects
minus one. These member functions allow for the testing of Bases, Bounds, Strides, etc
along each axis for two array objects. For example, the return value is TRUE if the Bases
match along all axes, and FALSE if they differ along any axis.

A conformability test is included to allow the user to optionally test the conformability of
two array objects before the array operation.

A.isSameBase(B); Check bases of both arrays along all axes (all bases equal return TRUE)
A.isSameBound(B); Check bounds of both arrays along all axes (all bounds equal return TRUE)
A.isSameStride(B); Check strides of both arrays along all axes (all strides equal return TRUE)
A.isSimilar(B); Check bases, bounds, and strides of both arrays along all axes
A.isConformable(B); Checks conformability of both arrays

1.5.15 Array Object Internal Consistancy Test

This function tests the internal values for consistancy it is mostly included for completeness.
It is most usefull within P4+ where there is significant testing that can be done between
local and global data to verify consistant internal behavior. It is used within A++ and P++
when internal debugging is turned on (not the default in distribution versions of A++ and
P++.

A.isCounsistant(); Checks internal consistancy of array object

1.5.16 Shape functions

These shape functions redimension an existing array object. The reshape function allows the
conversion of an nxm array to an mxn array (2D example), the total number of elements in
the array must remain the same and the data values are preserved. The redim function
redimensions an array to a different total size (larger of smaller), but does not preserve the
data (data is left uninitialized). The resize function is similar to the redim function except
that it preserves the data (truncating the data if the new dimensions are smaller and leaving
new values uninitialized if the new dimensions are larger. Each function can be used with
either scalar or Range object input parameters, additionally each function may be provided
an example array object from which the equivalent Range objects are extracted (internally).
All these member functions preserve (save and reset) the original base of the array object.

A.reshape(i,j.k,l); Change dimensions of array using the same array data (same size)
A.reshape(Span_l,Span_J,Span_K,Span_L); Change dimensions of array using the same array data (same size)
A.reshape(typeArray); Change size of array object using another array object
A.resize(i,j,k,l); Change size of array object (old data is copied and truncated)
A.resize(Span_l,Span_J,Span_K,Span_L); Change size of array object using Range objects
A.resize(typeArray); Change size of array object using another array object
A.redim(i,jk,1); Change size of array object (old data is lost)
A.redim(Span_l,Span_J,Span_K,Span_L); Change size of array object using Range objects
A.redim(typeArray); Change size of array object using another array object

transpose (A); transpose of elements of A

1.5.17 Display Functions

A(L,J).display(”label”); Prints array data for the view A(I,J) along with character string ”label” to sdtout
A.view(”label”); Prints array data and all other internal data for A along with character string ”label” to sdtout

Details of the display of the values within an array by the display function are controled by
the values assigned to the typeArray::DISPLAY_FORMAT variable. This variable has a
default value of typeArray::SMART _DISPLAY_FORMAT which allows for the auto
selection of either DECIMAL or EXPONENTIAL format depending upon the values within
the array. Display Format Control Values:

typeArray::DISPLAY FORMAT = typeArray::DECIMAL _DISPLAY_FORMAT; Uses xxx.yyyy format
typeArray::DISPLAY FORMAT = typeArray:EXPONENTIAL_DISPLAY_FORMAT; Uses x.yyyye®zz format
typeArray::DISPLAY FORMAT = typeArray::SMART _DISPLAY _FORMAT; Auto-selects either of above formats

1.5.18 Array Expressions Used For Function Input

Functions passing array objects by reference can’t be passed an expression since expressions
return temporaries that are managed differently internally. Functions passing expressions by
value require no special handling.

foo (evaluate (A+B)); Force (A+B) temporary to be persistent for function foo , which passes an array object by reference

1.5.19 Array Aliasing

A++ and P++ arrays can be aliased however all caveats apply as in the use of FORTRAN
equivalence. This permits array object to be views of other array objects or indexed parts of
other array objects. Note that P++’s adopt function must build the distributed array from
the collection of pointers to local memory in each processor and so requires both global and
local domain size information (P++ organizes any communication that is required to build
the distributed array (currently there is no communication required)).

B.reference (A(l,J)); Force B to reference A(l,J)
B.breakReference (); Break reference to A(l,J) (builds a copy of previous reference)
A-++ only
C.adopt (Fortran_Array_Pointer, n); 1D array C of length n using existing array
C.adopt (Fortran_Array_Pointer, n,m); 2D array C of length n X m using existing array
C.adopt (Fortran_Array_Pointer, n,m,0); 3D array C of length n X m X o using existing array
C.adopt (Fortran_Array_Pointer, n,m,o,p); 4D array C of length n X m X o X p using existing array
P++ only
C.adopt (Fortran_Array_Pointer, n, Local_Size_n); 1D array C of length n using existing array
C.adopt (Fortran_Array_Pointer, m, Local_Size_m,
n, Local_Size_n); 2D array C of length n X m using existing array

C.adopt (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o); 3D array C of length n X m X o using existing array
C.adopt C (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o,

p, Local_Size_p); 4D array C of length n X m X o X p using existing array

1.5.20 Fill Function

More fill functions will be added to later releases of A++/P++. Its purpose is to initialize
an array object to value or set of values.

B(I.J)fill(x); Set elements of B(l,J) equal to x
B(1,J).seqAdd(Base,Stride); Set elements of B(1,J) equal to Base, Base+Stride, ... , Base+n*Stride
default value for Base and Stride are 0 and 1

1.5.21 Access To FORTRAN Ordered Array

A++/P++ provides access to the internal data of the array object using the following
access functions. Arrays are stored internally in FORTRAN order and a pointer to the start
of the array can be obtained using the getDataPointer member function. In the case of a
view the pointer is to the start of the view. It is up to the user to correctly manipulate the
data (good luck). Similar access is provide to the array descriptor (though info for it’s use is
not contained in this Quick_Reference_Manual).

Fortran_Array_Pointer = A.getDataPointer(); Array_Descriptor_Type = A.getDescriptorPointer();

1.6 ”where” Statement

Example of where statement support in A++/P++. Note that elsewhere statements may
be cascaded and that an optional parameter (Mask) can be specified. Note that elsewhere
must have a set of parenthesis even if no parameter is specified. The mask must be
conformable with the array operations in the code block. On the Cray, and with the GNU
g++ compiler, the statement elsewhere(mask) taking a mask as a parameter is called
elsewhere_mask(mask). This is due to a problem with parameter checking of macros.
The syntaz for elsewhere(), not taking a mask, does not change. This aspect of A++
syntax may be changed slightly to accommodate these non-portable aspects of the C
preprocessor.

where (A == 0)

{

B = 0; elements of B set to zero at positions where A = 0

A =B+ G B added to C and assigned to A at positions where A = 0
elsewhere (B > 0) Use elsewhere_mask on the Cray and with GNU g++

{

B = A; elements of B set to A at positions where A # 0 and B > 0

}

elsewhere ()

{

B = A; elements of B set to A at positions where A Z 0 and B < 0
}

1.7 P++ Specific Information

There are access functions to the lower level objects in P4+ which can be manipulated by
the user’s program. Specifically we provide access to the Partitioning Type that each
array uses internally (if it is not using the default distribution). The purpose of providing
manual ghost boundary updates is to permit override of the message passing interpretation
provide in P++. The resulting reduced overhead provides a simple means to optimize
performance of operations the user recognizes as not requiring more than an update of the

internal ghost boundaries. The ”displayPartitioning” member function prints out ASCII
text which describes the distribution of the P++ array on the multiprocessor system. The
same functions exist in A++ but don’t do anything, this supports backward compatibility
between P++ and A++.

1.7.1 Control Over Array Partitioning (Distributions)

The distribution of P++ array objects is controled though partitioning objects that are
associated with the array objects. The association of a partitioning object with and array is
done either at construction of the array objects or later in the probram. An unlimited
number of array objects may be associated with a given partitioning object. The
manipulation of the partitioning object translates directly to manipulation of each of the
array objects associated with the partitioning. This feature makes it easier to manipulate
large number of arrays with a simple interface. Partitioning objects are valid object in A4+,
but have no meaningful effect, so they are only functional in P++. This is to permit
bidirectional portability between A4+ and P++ (the serial and parallel environments). An
unlimited number of Partitioning _Type objects may be used within an application. One
of the main purposes of the partitioning objects is to define the distribution of P++ arrays
and permit the dynamic redistribution. The expected usage is to have many P++ arrays
associated with a relatively small number of Partitioning_Type objects.

Constructors

At present the constructor taking a intArray as a parameter is not implemented, it’s purpose
is to provide a simple means to control load balancing; it is the interface for a load balancer.
But load balancing is not a part of A++/P++, load balancers used with parallel P+-+
applications are presently separate from P++. The most common usage of the partitioning
object is to either call the constructor which specifies a subrange of the virtual processor
space (this will be truncated to the exitisting virtual processor space if too large a range is
specified), or call the default constructor (the whole virtual processors space) and then call
member functions to modify the partitioning object.

Partitioning Type P (); Default constructor

Partitioning_Type P (Load_Map); Load_Map is a intArray specifying the work distribution
Partitioning Type P (Number_Of_Processors); integer input specifies number of processors to use (start=0)
Partitioning_Type P (Span_P); Range input specifies range of processors to use
Partitioning_Type P1 = P; Deep copy constructor

Member functions

The operations on a Partitioning_Type object are done to all P4+ arrays that are
associated through that Partitioning _Type object. This provides a powerful mechanism
for the dynamic control of array distributions; load balancers are expected to take advantage
of this feature. The ”applyPartition” member function is provided so that multiple
modifications to the partitioning object may be done and a single restructuring of the P4+
arrays associated with the partitioning object completed subsequently. P++ operation is
undefined if the partitioning is never applied to it’s associated objects. At present, only the
partitionAlongAxis member function does not call the applyPartition function automatically.
This detail of the interface may change in the near future to allow a more simple usage.

The partitionAlongAxis member function takes three parameters: int Axis, bool Partitioned,
int GhostBoundaryWidth. This simplifies the setting and modification of the partitioning.
Afterward this only takes effect once the applyPartition member function is called. Then all
distributed arrays associated with the partitioning object are redistributed with the ghost
boundaries that were specified.

SpecifyDecompositionAxes (Input_Number_Of_Dimensions_To_Partition); Integer input
SpecifyInternalGhostBoundaryWidths (int,int,int,int); Default input is zero

display (Label);
displayDefaultValues (Label);
displayPartitioning (Label);
displayDefaultPartitioning (Label);
updateGhostBoundaries (X);

printout partition data

printout default partition data

graphics display of partition data
graphics display of default partition data
X is a P++ array

partitionAlongAxis (int Axis, bool PartitionAxis, int GhostBoundaryWidth)input specifies axis

applyPartition ();

force partitioning of previously associated P+

1.7.2 Array Object Member Functions

Array objects have some specific member functions that are meaningful only within P++4-, as
A++ array objects the member functions are defined, but have do nothing. This is done for

backward compatability.

Partitioning_Type *X = A.getPartition();
A.partition(Partition);
A.partition(typeArray);
A.getLocalBase(axis);
A.getLocalBound(axis);
A.getLocalStride(axis);

A.getLocalLength (axis);
A.getLocalFullRange(axis);

A.getSerial ArrayPointer();
A.getLocalArray();
A.getLocalArrayWithGhostBoundaries();
A.updateGhostBoundaries();
A.displayPartitioning();
A.getGhostCellWidth(Axis);
A.getInternal GhostCellWidth(Axis);
A.setInternalGhostCellWidth(int,int,int,int);

get the internal partition

repartition dynamically

repartition same as existing array object

return base of local processor data

return bound of local processor data

return stride of local processor data

return length of local processor data

return a Range object (base,bound,stride of the local array)
return a pointer to the local array (and A4+ array)

return a shallow copy of the local array (and A++ array)
return a shallow copy (with ghost boundaries)

updates all ghost bondaries

prints info on distribution of array data

access to ghost boundary width

access to ghost boundary width (devalued, will be removed in future r
dynamicly adjusts ghost boundary width

A.setInternalGhostCellWidthSaveData(int,int,int,int)y above but preserves the data and updates ghost boundaries

1.7.3 Distributed vs Replicated Array Data

Within P4+ arrays are distributed, distributions have the following properties:

e 1 An array is distributed in some or all of the dimensions of the array (the user selects

such details).

e 2 An array is distributed over a subset of processors.

e 3 An array is distributed over only a single processor (a trivial case of #2 above).

e 4 An array is built onto only one processor and only that processor knows about it
(i.e. an A++ array object is built locally on a processor).

e 5 An array is replicated onto all processors (this is really a trival case of #4 above
where each array is built locally on each processor). In this case the user is
responciple for maintaining a consistant representation of the data which is replicated.
This later case is useful for when a small array is required and is analogous to the case
of replication of scalars onto every processor since no overhead of parallel support.

P++ also contains SerialArrays, (e.g. doubleSerialArray). These arrays are simply
A-++ array objects on each processor. In a data parallel way, if all processors build a serial
array object, then each processor builds an array and the array is replicated across all
processors. It is up to the user to maintain the consistancy of the array data across all
processors in this case. Many arrays that are small are simply replicated, this costs little in
additional space and avoid any communication when data is accessed.

1.7.4 Virtual Processors

P++ uses a number of processors independent upon the number of actual processors in
hardware. On machines that support it the excess processors are evenly distributed among
the hardware processors. This allows for greater control of granularity in the distribution of
work. Where it is important to take advantage of this is application dependent. For most of
the development this has allowed us to test problems on a number of processors indepentend
of the actual number of machines that we have in our workstation cluster.

1.7.5 Synchronization Primative

Note that the Communication_Manager::Sync() is helpful in verifying the all processors
reach a specific point in the parallel execution. This is helpful most often for debugging
parallel codes.

Communication_Manager::Sync(); Call barrier function to sync all processors

1.7.6 Access to specific Parallel Environment
Information

Although access to the underlying parallel information such as processor number, etc. can
be used to break the data parallel model of execution such information is made available
within P++ because it can be useful if used correctly. As an example of correct useage
moving an application using graphics from A++ to P++ often is simplified if a specific
processor is used for all the graphics work while others are idle. Access to the process
number allows the code on each processor to branch dependent upon the processor number
and thus simplifies (at initially) the movement of large scale A++ applications onto parallel
machines using P++. Some of the data is only valid for either PVM or MPI, and some data
is interpreted different by the two communication libraries.

Communication_Manager::numberOfProcessors(); get number of virtual processors
Communication_Manager::localProcessNumber(); get processor id number
Communication_Manager::Sync(); barrier primative
Communication_Manager::My_Task_ID; get process id
Communication_Manager::MainProcessorGroupName; Name of MPI Group

1.7.7 Escaping from the Data Parallel Execution Model

Since the data parallel style is only assumed for the execution of P++ array operations, but
not enforced, it is possible to break out of the Data Parallel model and execute any parallel
code desired. Users however are expected to handle their own communication. Since some
degree of syncronization is helpful in moving into and out of the data parallel modes, the
Communication_Manager::Sync() function is expected to be used (though not required).

1.7.8 Access to the local array

Each P4+ distributed array on each processor contains a local array (a
SerialArray object (same as an A4+ array object)). The local array is
availabel with and without ghost boundaries.

Access to the local array without ghost boundaries

The local array stores the local part of the distributed array data. Access to
the localArray is obtained from:

A.getLocalArray(); return a shallow copy of the local array (an A++ array)

Access to the local array with ghost boundaries

Ghost boundaries are not visible within the local array since the local array is
a view of the partition of the distributed space on the current processor. The
ghost boundaries (if the ghost boundary width is nonzero) are present, but
access to them from the view would result in an out of range error. Another
mechanism for accessing the local array is required to get the local array
containing the ghost boundaries.

A.getLocal ArrayWithGhostBoundaries(); return a shallow copy (with include ghost boundaries)

The access to the ghost boundaries is possible from this view, but the user
must know how to interpret the ghost boundaries within the returned local
array object. (Hint: they are at the boundaries and the widths along each
access are given by the ghost boundary widths obtained from the partitions.)

1.7.9 Examples of P++4 specific operations

We provide some simple examples within the A++/P++ manual, please
consult that chapter on Examples to see illustrations of the useage of the P++
specific functions.

1.8 Optimization Manager

Optimization manager is an object whose member functions control properties
of the execution of the A4++ and P++ array class (see reference manual).
More member functions later will allow for improved optimization potential.
The setup of the ” Virtual Machine” may be separated outside of the P++
interface since not all machine environments require it (both MPI and PVM
do, so it is present in P4+ currently).

The ”Program _Name” should be initialized with the complete name of the
executable (including path), however in environments where it is supported
P++ will automatically search for the string if only "" is specified. This is a
feature that can not be supported on all architectures (or PVM would handle
it internally).

Initialize_Virtual_Machine (char* Program_Name = ”” , int Num_Processors = 1, int argc, cHérst*Pargvs)atement

Exit_Virtual_Machine (); Last P++ statement
setOptimizedScalarIndexing (On_Off_Type On_Off = On); Optimize performance

1.9 Diagnostic Manager

There are times when you want to know details about what is happening

internally within A++/P++. We provide a limited number of ways of seeing
what is going on internally and getting some data to understand the behavior
of the users application. More will be added in future versions of A++/P++.

1.9.1 Report Generation

There are a number of Diagnostic manager function which generate reports of
the internal useage. Some reports are quite long, other are brief and
summarize the execution history for the whole application.

getSizeOfClasses(); Reports the sizes of all internal classes in A++/P++
getMemoryOverhead(); returns memory overhead for all arrays
getTotalArrayMemoryInUse(); returns memory use for array elements
getTotalMemoryInUse(); reports total memory use for A++/P++
getnumber OfArraysConstantDimensionInUse(dimerspontmbutdiypy dadension
getMessagePassingInterpretationReport(); Communication Report
getReferenceCountingReport(); Reference Counting Report
displayCommunication (const char* Label = ””); communication report by processor
displayPurify (const char* Label = ””); Displays memory leaks by processor (uses purify)
report(); Generates general report of A++/P++ behavior
setTrackArrayData(Boolean trueFalse = TRUE);Track and report on A++/P++ diagnostics
getTrackArrayDatal(); get Boolean value for diagnostic mechanism
buildCommunicationMap (); Builds map of communications by processor
buildPurifyMap (); Builds map of purify errors by processor
getPurify UnsupressedMemoryLeaks(); Total Memory leaked

Features and counted quantities include:

e The use of int Diagnostic_Manager::getSizeOfClasses()
displays a text report of the sizes of different internal structures in
A++P++.

e The use of int Diagnostic_Manager::getMemoryOverhead ()
returns an integer that represents the number fo byte of overhead used
to store intenal array descriptors, partitioning information (P++ only),
etc.; for the whole application at the time that the function is called.

e The use of int
Diagnostic_Manager::getTotalArrayMemoryInUse()
returns an integer representing the total number of array elements in use
in all array objects at the time that function is called.

e The use of int Diagnostic_Manager::getTotalMemoryInUse()

returns the total number of bytes in use within A++/P++ for all
overhead and array elements at the time the function is called.

e The use of int Diagnos-
tic_Manager::getnumberOfArraysConstantDimensionInUse()
returns the number of arrays of a particular dimension and of a
particular type. this function is an example of the sort of diagnostic
questions that can be written which interogate the runtime system to
find out both global and local properties of its operation.

e The use of int
Diagnostic_Manager::getMessagePassingInterpretationReport()
generates a report (organized from each processor, but reported on
processor 0). The report details the number of MPI sends, MPI receives,
the number of ghost boundary updates (one update implies the update
of all ghost boundaries on an array, even if this generates fewer MPI
messages than ghost boundaries), and the number VSG updates regular
section transfers (the more general communication model which permits
operations between array objects independent of the distribution across
multiple processors).

e The use of int
Diagnostic_Manager::getReferenceCountingReport()
generates a report of the internal reference counts used in the execution
of array expressions. This function is mostly for internal debugging of
reference counting problems.

e The use of int Diagnostic_Manager::report()
generates a summary report of the execution of the A++/P++
application at the point when it is called.

e The use of int Diagnostic_Manager::setTrackArrayData()
turns on the internal tracking of array objects as part of the internal
diagnostics and permits the summary report to report more detail. It is
off by default so that there is no performance penalty associated with
internal diagnostics. This must be set at the top of an application before
the first array object is built.

1.9.2 Counting Functions

Optional mechanisms in A++/P++ permit many details to be counted
internally as part of the report generation mechanisms. All functions return an
integer.

reset CommunicationCounters (); reset the internal message passing counting mechanisn
getNumberOfArraysInUse(); returns the number of arrays inuse
getMaxNumberOfArrays(); returns the max arrays in used at any point in time

getNumberOfMessagesSent(); returns the number of messages sent

getNumberOfMessagesReceived(); returns the number of messages received
getNumberOfGhostBoundaryUpdates(); returns number of updates to ghostboundaries
getNumberOfRegularSection Transfers(); # of uses of general communication mechanism
getNumberOfScalarIndexingOperations(); scalar indexing

getNumberOfScalarIndexingOperationsRequiringéehdbalBrleadngst(ith communication

Features and counted quantities include:

e The use of int
Diagnostic_Manager::reset CommunicationCounters()
permits the internal counters to be reset to ZERO.

e Number of arrays in use int
Diagnostic_Manager::getNumberOfArraysInUse()
The number of arrays in use at any point in the execution is useful for
gauging the relative use od A++/P++ and spotting potential memory
leaks.

e Max arrays in use int
Diagnostic_Manager::getMaxNumberOfArrays()
This function tallies the most number of arrays in use at any one time
durring the execution history (note: records use in increments of 300).

e Reset message counting int
Diagnostic_Manager::reset CommunicationCounters()
Resest the message counters to ZERO to permit localized counting of
messages generated from code fragements.

e Number of messages (sent) int
Diagnostic_Manager::getNumberOfMessagesSent|()
returns the total messages since the beginning of execution or from the
last call to Diagnostic_Manager::reset CommunicationCounters().

e Number of messages (received) int
Diagnostic_Manager::get NumberOfMessagesReceived()
returns the total messages since the beginning of execution or from the
last call to Diagnostic_Manager::resetCommunicationCounters().

e Number of messages (received) int
Diagnostic_Manager::getNumberOfGhostBoundaryUpdates()
Returns the total number of calls to update the ghost boundaries of
arrays. Note that some calls will not translate into message passing (e.g.
if only run on one processor or if the ghost boundary width is ZERO).
Reports on number of messages since the beginning of execution or from
the last call to
Diagnostic_Manager::reset CommunicationCounters().

1.9.3 Debugging Mechanisms

These functions provide mechanisms to simplify the error checking and
debugging of A++/P++ applications.

getPurifyUnsupressedMemoryLeaks(); Total Memory leaked
setSmartReleaseOfInternalMemory (On/Off); Smart Memory cleanup
getSmartReleaseOfInternalMemory(); get Boolean value for smart memo
setExitFromGlobalMemoryRelease(Boolean); setup exit mechanism
getExitFromGlobalMemoryRelease(); get Boolean value for exit mechani
test (typeArray); Destructive test of array object
displayPurify (const char* Label = ””); Displays memory leaks by process
buildPurifyMap (); Builds map of purify errors by pro

e The use of void
Diagnostic_Manager::setSmartReleaseOfInternalMemory ()
(called from anywhere in an A++/P++ application) will trigger the
mechanism to cleanup all internally used memory within A++/P++
after the last array object has been deleted. Specifically it counts the
number of arrays in use (and the number of arrays used internally (e.g.
where statement history, etc.) and when the two values are equal it calls
the void globalMemoryRelease() function which then deletes
existing arrays in use and other data used internally (reference count
arrays, etc.). The user is warned in the output of the void
globalMemoryRelease() function to not call any functions that would
use A++/P++ since the results would be undefined.

e The use of the void
Diagnostic_Manager::setExitFromGlobalMemoryRelease() will
force the application to exit after the global memory release (and from
within the void globalMemoryRelease() function itself. The user
may then specify that the normal exit from the base of the main
function is an error and thus detect the proper cleanup of memory in
test programs using the exit status (stored in the $status enviroment
variable on all POSIX operating systems (most flavors of UNIX). If
purify is in use (both A++/P++ configured to use purify and running
with purify) then purify_exit(int) is called. This function or’s the
memory leaks, memory in use, and purify errors into the exist status so
that the $status enviroment variable can be used to detect purify details
within test codes. A++/P++ test codes are tested this way when
A++/P++ is configured to use PURIFY. P++ applications can not
always communicate detected purify problems on other processes AND
output the correct exit status, this is only a limitation of how mpirun
returns it’s exit status.

e The use of void Diagnostic_Manager::test(typeArray A) allows for
exhaustive (destructive) tests of an arrya object. This is useful in testing
an array object for internal correctness (more robust testing than the
nondestructive testing done in the Test_Consistancy() array member

function).

e The use of void Diagnostic_Manager::displayPurify() generates a
report of purify problems found (currently this mechanism does not work
well, since many purify errors can only be found at exit).

1.9.4 Misc Functions

All other functions not yet documented in detail.

getMessagePassinglnterpretationReport();
getReferenceCountingReport();
getSizeOfClasses();
getMemoryOverhead();
getTotalArrayMemoryInUse();
getTotalMemoryInUse();

Communication Report

Reference Counting Report

Reports the sizes of all internal classes in A++/P++
returns memory overhead for all arrays

returns memory use for array elements

reports total memory use for A++/P++

getnumber OfArraysConstant DimensionInUse(dimension,inpu¢fiygie Gydayray dimension

displayPurify (const char* Label = ””);
getPurify UnsupressedMemoryLeaks();

report();

setSmartReleaseOfInternalMemory (On/Off);
getSmartReleaseOfInternalMemory();
setExitFromGlobalMemoryRelease(Boolean);
getExitFromGlobalMemoryRelease();
setTrackArrayData(Boolean trueFalse = TRUE);
getTrackArrayData();

test (typeArray);

buildCommunicationMap ();

buildPurifyMap ();

displayCommunication (const char* Label = 77);
resetCommunicationCounters ();

1.10 Deferred Evaluation

Displays memory leaks by processor (uses purify)
Total Memory leaked

Generates general report of A++/P++ behavior
Smart Memory cleanup

get Boolean value for smart memory cleanup
setup exit mechanism

get Boolean value for exit mechanism

Track and report on A++/P++ diagnostics

get Boolean value for diagnostic mechanism
Destructive test of array object

Builds map of communications by processor
Builds map of purify errors by processor
communication report by processor

reset the internal message passing counting mechanism

Example of user control of Deferred Evaluation in A++/P++. Deferred
Evaluation is a part of A++4 and P++4, though it is not well tested in P++ at

present.

Set_Of_Tasks Task_Set; build an empty set of tasks
Deferred _Evaluation (Task_Set) start deferred evaluation

{
B =0; array operation to set B to zero - DEFERRED
A=B+ (G array operation to set A equal to B plus C - DEFERRED
}
Task_Set.Execute(); now execute the deferred operations

1.11 Known Problems in A++/P++

e Copy constructors are aggressively optimized away by some compilers and this results
in the equivalent of shallow copies being built in the case where an A++/P++ array
is constructed from a view. Note that as a result shallow copies of A+ arrays can be
made unexpectedly. A fix for this is being considered, but it is not implemented.

o Performance of A+ is at present half that of optimized FORTRAN 77 code. This is
because of the binary processing of operands and the associated redundent loads and
stored that this execution model introduces. A version of A++/P++ using
expression templates will resolve this problem, this implementation is available and is
present as an option within the A4++/P++ array class library. However, compile
times for expression templates are quite long.

e Internal debugging if turned on at compile time for A+-+/P++ will slow the
execution speed. The effect on A++ is not very dramatic, but for P4+ it is much
more dramatic. This is because P4+ has much more internal debugging code. The
purpose of the internal debugging code is to check for errors as agressively as possible
before they effect the execution as a segment fault of other mysterious error.

e Performance of P4+ is slower if the array operations are upon array data that is
distributed differently across the multiple processors. This case requires more
communication and for arrays to be built internally to save the copies originally
located upon different processors. P++ performance is most efficient if the array
objects are aligned similarly across the multiple processors. This case allows the most
efficient communication model to be used internally. This more efficient
communication model introduces no more communication than an explicitly hand
coded parallel implementation on a statement by statement basis.

The ChangeLog in the top level of the A++4P++ distribution records all modifications to the
A++/P++ library.

Chapter 2

Appendix

2.1 A++4/P++ Booch Diagrams

Booch diagrams detail the object oriented design of a class library. The
separate clouds represent different classes. Those which are shaded represent
classes that are a part of the user interface, all others are those which are a
part of the implementation. The connections between the ”clouds” represent
that the class uses the lower level class (the one with out the associated ”dot”)
within its implementation.

2.2 A++4/P++ Error Messages

25

A++ Class Design

&

1 1

Array Descriptor_Typ
1

Figure 2.1: A++ Class Design.

(d = maximum array dimengion)

array of *intArray

P++ Class Design

SerialArray_Descriptor_Typ Array_Descriptor_Type

10

1

d (d=maximum array dimensions) 4 . p on)
= maximum array dimensions)

Where_Statement_Support array of *intSerialArray
array of *intArray

BLOCK PARTI

