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A method is described to solve the time-dependent incompressible
Navier—Stokes equations with finite differences on curvilinear averlap-
ping grids in two or three space dimensions, The scheme is fourth-order
accurate in space and uses the momentum equations for the velocity
coupled to a Poisson equation for the pressure. The boundary condition
for the pressure is taken as V -u =0, Extra numerical boundary condi-
tions are chosen to make the scheme accurate and stable, The velocity
is advanced explicitly in time; any standard time stepping scheme such
as Runge—Kutta can be used. The Poisson equation is solved using
direct or iterative sparse matrix solvers or by the multigrid algorithm,
Computational tesults in two and three space dimensions are given.
© 1994 Academic Press, Inc.,

1. INTRODUCTION

A scheme is described for the accurate solution of the
incompressible Navier-Stokes equations on regions with
complicated geometry in two and three space dimensions.
The approach uses fourth-order accurate finite differences
on curvilinear overlapping grids. The momentum equations
for the velocity, u, are solved together with the Poisson
equation for the pressure, p. One key element of the method
is the choice of boundary conditions. A boundary condition
for the pressure is required as well as extra numerical
boundary conditions for the fourth-order method. The
boundary condition for the pressure is takenas V-u=0. It
will be argued that this is the natural boundary condition
for p. Numerical boundary conditions are chosen by apply-
ing the equations on the boundary and by setting the
normal derivative of V-u equal to zero on the boundary.
An overlapping grid also requires boundary conditions
on those boundaries where one component grid overlaps
another. Solution values at these points are obtained by
mterpolation. This is the standard approach and is
described in more detail later in the paper.

The velocity is advanced explicitly in time with a method
of lines approach. Any standard time-stepping scheme such

*Present address: Computing, Information and Communications
Division, Los Alamos Natjonal Laboratory, Los Alamos, New Mexico,
87545, E-mail address: henshaw(@c3 lani gov.

as a Runge—Kutta or multistep method can be used. At each
stage in the time step the velocity is first updated and then
the pressure is found by solving the Poisson equation. The
overall accuracy in time is equal to the accuracy of the
chosen time-stepping algorithm. The fourth-order accurate
approximation to the Poisson equation is solved either with
a direct sparse matrix solver, an iterative sparse matrix
solver or with the multigrid algorithm. Some care is
required to solve the Poisson equation since the system is
usually singular (the pressure is only determined up to a
constant). Numerical results-in two and three space dimen-
stons show the accuracy of the scheme. The stability and
accuracy of the scheme described in this paper are analysed
in [18], where a general principle for deriving numerical
boundary conditions is also presented.

1.1. Background

The initial boundary-value problem for the incom-
pressible Navier—Stokes equations is

u+{u-Viu+Vp—vAau—-1=0
x e (1)
V.ou=90
B{u, py=0 x e 00
u(x, 0)=uy{x} at =0

Here p is the pressure and v the kinematic viscosity, v > 0.
The domain Q lies in R™ where n,, the number of space
dimensions, is two or three. There are n, boundary condi-
tions denoted by B(u, p}=0. On a fixed wall, for example,
the boundary conditions are u = 0. System (1) will be called
the velocity-divergence form of the equations,

There are alternative formulations to the velocity-
divergence equations (1). By taking the curl of the momen-
tum equations, a system for the vorticity &=V xu and
velocity results which does not depend on the pressure. In
two space dimensions this system is particularly convenient
as it can be written in terms of two scalar functions, a stream

function s, and the one nontrivial component of the
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14 WILLIAM D.
vorticity. In three space dimensions many of the advantages
of the vorticity formulation are lost and it becomes more
attractive (in applying boundary conditions for example),
to use velocity and pressure variables.

An alternative initial-boundary value problem, called the
velocity—pressure formulation, is

u+(u-Viju+Vp—vAau—£f=0
, xef2 (2)
Ap+Vu-u, +Vo-u, +Vw-u —V.-f=0
Blu, p)=0
, X80
Vou=0

u(x, 0) =wu,y(x) at =0
This is the form of the equations that will be discretized in
the method described in this paper. The pressure equation is
derived by taking the divergence of the momentum equation
and using V -u=0. For this latter system an extra boundary
condition is required in order to make the problem well-
posed. The condition V-u=0 for x €30 is added as the
extra boundary condition. Further remarks on this choice
are given later.

Fourth-order accurate difference methods require extra
(numerical) boundary conditions. The choice of these
numerical boundary conditions is crucial to the creation of
a stable and accurate scheme. For the scheme given here,
boundary conditions are required to determineu and p
at two lines of fictitious (ghost} points. Often, a useful
technique for deriving boundary conditions for higher-
order methods is to apply the equation (and its normal
derivatives) on the boundary. Numerical boundary condi-
tions are thus derived by applying the momentum equations
and the pressure equation on the boundary. In addition the
normai derivative of the divergence is specified on the
boundary.

u,+(u-Vig+Vp=v du+f

=0, x£8Q
Numerical BCs: Ap+Vu-u.+Vp.u, +Vw.u, - V.f
=0, X0

(d/on)(V.-u}=0, X €50

(3)

On the second fictitious line the pressure and the tangential
components of the velocity are extrapolated. There is also a
second-order accurate version of this method that does not
require these extra numerical boundary conditions.

1.2. Discussion

It is appropriate, perhaps, to make some remarks regard-
ing the choice of V.u =10 as the extra boundary condition
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for the velocity—pressure formulation. The extra boundary
condition required by the velocity-pressure formulation
should satisfy three conditions. (i) It should be chosen so
that {2} (plus compatibility constraints) is well posed. (ii) It
should be consistent with the original formulation (1).
(iii) it should be chosen so that formulation (2) is equiv-
alent to (1). These three conditions are satisfied by the
boundary condition V -u =0, which, although it does not
look like a pressure boundary condition, is in some sense
the natural extra condition to add. It is not hard to show
that (2) is equivalent to (1) at least for solutions that are
sufficiently smooth.

The question of what boundary condition to use for the
pressure equation has led to much discussion, see for exam-
ple [11, 19]. These papers consider, for example, whether it
is appropriate to use the tangential or normal component of
the momentum equation on the boundary as a boundary
condition for the pressure equation. Gresho and Sani [11]
present an extended discussion of pressure boundary condi-
tions where they conclude that the most appropriate condi-
tion is the use of the normal component of the momentum
equation on the boundary. It appears, however, that essen-
tially all methods also impose (implicitly or explicitiy)
V -u=0 on the boundary. Often the fact that this condition
is applied is not emphasized. On staggered grids, for exam-
ple, the condition occurs naturally. In related work
Karniadakis er @/. [19] consider boundary conditions for a
projection method for the spectral element method. They
use the normal component of the momentum equation but
find that in this boundary condition they must write 4u as
V(V.u)—Vx(Vxu)and set V(V.u) =0,

It seems that much of the confusion goes away if one
realizes that the essential boundary condition for the
pressure equation is V-u={0. This is the natural condition
to add so that the velocity—pressure formulation is
equivalent to the velocity-divergence formulation. The
velocity—pressure formulation is not equivalent to the
velocity-divergence formulation if the extra boundary
condition is instead taken as the normal component of
the momentum equation for there is nothing to stop the
divergence from becoming nonzero in the domain if it is
nonzero on the boundary. Indeed this later boundary
condition alone adds no new information and would lead
to an under-determined system, as pointed out by
Strikwerda [24]. However, from a discrete point of view it
seems appropriate to apply the momentum equation on the
boundary as an extra numerical boundary condition. This
boundary condition, combined with the (essential) bound-
ary condition V-u=20 then leads 1o a boundary condition
on the normal derivative of the pressure that can be
conveniently used when solving the discrete Poisson
equation for the pressure.

The advantages of using higher-order accurate methods
for the solution of the incompressible Navier-Stokes equa-
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tions (or many other PDEs) are by now well known. On
periodic regions, Fourier spectral methods are now widely
used. Fourth-order methods, although not as accurate as
spectral methods, still offer significant advantages over
second-order methods. Applying a high-order method on a
complicated region is a difficult task. One major difficulty is
in the generation of a grid for the region. The grid must be
smooth enough so that errors associated with variations in
the grid do not overwhelm the errors in the method. A
second difficulty is developing a high-order method that
works in general regions. There arc a number of approaches
to generating grids for complicated geometries. These
approaches include muitiblock patched grids [25], unstruc-
tured triangular (tetrahedral) grids [2] and overlapping
(overlaid) grids [23, 8]. With multiblock patched grids one
can use higher-order finite-difference methods or the spec-
tral element method [19]. Higher order finite element or
finite-volume methods can be used on unstructured grids.
Each grid generation approach has its own advantages and
disadvantages. Unstructured grids are very flexible but they
are not as efficient as structured grids; moreover, the
problem of creating a good triangular grid to resolve
viscous boundary layers is still an open question. Multi-
block patched grids are efficient but less flexible—the
problem of automatically dividing a three-dimensional
region into blocks is still a problem. Overlapping grids
represent a compromise; they are more flexible than
patched grids but are still highly structured.

In this paper an approach is presented that uses overlap-
ping grids and high-order finite differences. Overlapping
grids can be used to create smooth grids on complicated
regions. The grid construction program CMPGRD is used
to create overlapping grids in two and three space dimen-
sions [8]. An overlapping grid consists of a set of compo-
nent grids which cover a region and overlap where they
meet. Interpolation is used to match the solution between
component grids. As each component grid is logically
rectangular it is straight forward to apply high-order finite
difference methods in an efficient manner. Overlapping
grids can be created that are free from artificial coordinate
singularities. For example, the singularities at the poles of a
sphere associated with the standard spherical polar
coordinates can be avoided by using two (or more)
overlapping patches to cover the sphere [177. A less severe
form of singularity appears in multiblock patched grids
where the metric coefficients are sometimes discontinuous
across block boundaries. Overlapping grids can avoid these
types of singularitics, thus making it much easier to obtain
high-order accuracy.

High-order accurate methods on overlapping grids have
be used successfully for a variety of problems. In [6], for
example, Browning has used fourth- and six-order methods
on overlapping grids to solve the shallow water equations
on a sphere. In [8, 28] fourth-order accurate methods are
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used to solve eiliptic problems and nonlinear eigenvaiue
problems on overlapping grids.

In related work, the three-dimensional incompressible
Navier-Stokes equations have been solved on overlapping
grids by Kiris er al. [21]. They use the artificial com-
pressibility method and second-order accurate differences to
compute the flow in an artificial heart. These computations
show some of the advantages of using overlapping grids for
computing flows with moving boundaries in complex three-
dimensional regions. Tu and Fuchs also solve the
three-dimensional incompressible equations on overlapping
grids for flows in internal combustion engines. They use a
second-order accurate method coupled with a multigrid
algorithm [267]. Recently Wright and Shyy [297 have
described a method for multi-block grids where they are
concerned with conservation at the interface boundaries.
The approach described in this paper has similarities to the
well-known projection method, originally developed by
Chorin [9]. See, for example, the article by Bell, Colella,
and Glaz [3] for a discussion of projection methods.

2, SPATIAL DISCRETIZATION

The equations defining the velocity—pressure formulation
are discretized in space using finite-difference methods on
overlapping grids. An overlapping grid consists of a set of
logically rectangular grids that cover a region and overlap
where they meet. Interpolation conditions are used to con-
nect the solutions on different component grids. Associated
with each component grid (numbered k=1, 2, ..., n,) there
is a transformation, d,, that maps the unit cube, with
coordinates denoted by r = (r, r,, r;), into physical space,
X=(xy, X2, X3),

x(r)=d,(r).
Each component grid, G, consists of a set of grid points,

Gy= {xf,k li=(iy, iy, i3), My i — 250, Shpppet 2,

m=1,23}.

Two extra lines of fictitious points are added for con-
venience in discretizing to fourth order. Boundaries of the
computational domain will coincide with the boundaries of
the unit cubes, i,,=n,, ., O i, =n,,, for m=1, ., n,
Henceforth, the subscript &k, denoting the component grid,
will normaily not be written.

Let U; and P, denote the discrete approximations to u
and p so that

Uizu(x;),  P;=p(x,).

Here U,=(U,;, U,, U;;) is the vector containing the
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cartesian components of the velocity. The momentum
and pressure equations are discretized with fourth-order
accurate central differences applied to the equations written
in the unit cube coordinates, as will now be outlined. Define
the shift operators E,, and E_,, in the coordinate
direction m by

U"l:l:l.i)_‘i;; if m=l
E;thi: U,'l,,'lil,;] if m=2 (4)
Uy niz if m=3
and the diflerence operators
Dim - E+m -1
Dimhimz E+m1E+m2

Let Dy, , D, _,. Da,,. denote fourth-order accurate
derivatives with respect to r and x. The derivatives with
respect to r are the standard fourth-order centred difference
approximations. For example,

é —E? RE. —RFE E? ‘
_“_FN"Ddrme:=( +m+ +m 8 —m+ 7»1) Ul
o 12(dr.,)
&%u
E?kl)ztrmrmu,'
(_'E%Pm+ 16E+m_30+ 16E_mk E{M)Ur
24(4r,)’ ’

where Ar,, = 1/(n,, , — 1, ,). The derivatives with respect to
x are defined by the cham ruie,

6u or, 5u
e U H D
éx,, < ox, ar, z U
’u ér, or, d'u &%, du
@ ‘,;,axm dx,, 5r,,r,+§n: ax?, _ﬁr_,
5r or
=D, . U,: Z e T —Lp,, .U,
c'ir
+3Y (1)4% . )DmU

The entries in the Jacobian matrix,dr,,/dx,, are assumed to
be known at the vertices of the grid; these values are
obtained from the grid generation program, CMPGRD,
The spatial discretizations of the momentum and pressure
equatjons can thus be written as

d
_Ui+(Ui'V4) U, +V, P, —

d[ VAaUl‘_fIFO

na
A4P 4+ Z Vél.Um,i'DirmUi_'Vcl'fi;Oa

=1

where

VZ: Ur’= (D4xl Uia Ddx; U, Dd,(_; Ur’)
V, U;=D,,U,,+D,,Us i+ Dy Uy
A4UE = (‘D4x1.\'] + Dd,r;x: + D4x3x3) U.i'

In order to help keep the discrete divergence small, an
additional term proportional to V, - U will be added to the
pressure equation. This will be described later in the paper.
It can be seen that the discretization of the equations is
acomplished in a straightforward manner with averlapping
grids. However, the remaining steps of setting up the matrix
for the pressure equation and solving the boundary condi-
tions are more difficult,

Discretizing the boundary conditions. For the purposes of
this discussion assume that the boundary condition for u is
of the form u(x, {}=ug(x, t) for xed2. More general
boundary conditions on u and p, such as extrapolation con-
ditions, can also be dealt with, although some of the details
of implementation may vary. At a2 boundary the conditions

\

U, —ug(x,)=0
V,-U;=0
D4(Vy-U)=0
£II-U +{U,;-Y,)U
dr i >f0r i € boundary
+V,P.—v4,U,—f,=0
ng
A4Pi+ Z V‘SUm.i'D4.\:mUi
m=1
_V4.f’_={)J
t,-0% , U,=0

Dt p— 0} for iesecond fictitious line

are applied, where t,, u = 1, n;— 1, are linearly independent
vectors that are tangent to the boundary. In the extrapola-
tion conditions either D, or D_,, should be chosen, as
appropriate. Thus at each point along the boundary there
are 12 equations for the 12 unknowns (U,, P,) located on
the boundary and the two lines of fictitious points. Note
that two of the numerical boundary conditions couple the
pressure and velocity. In order to advance the velocity with
an explicit time stepping method it is convenient to
decouple the solution of the pressure equation from the
solution of the velocity. A procedure to accomplish this is
described in the next section on time stepping.

3, TIME STEPPING

A method of lines approach is used to solve the equations
in time. After discretizing the equations in space, one
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can regard the result as a system of ordinary differential
equations,
d

—U=FU,?1),
7 (U, )

(5)
where the pressure is considered to be a function of the
velocity, P = P(U). The equations are integrated using an
explicit time-stepping schemne (implicit methods, such as the
fractional-step methods [20,19], could also be used).
Typical explicit time-stepping procedures such as Runge-
Kutta methods or multistep methods advance the solution
in time by solving one or more substeps of the form

U =U(*) +a 4t F{U(t — di), t — At), (6)
where U(*) is some known function, depending on the solu-
tion at previous time steps. Assume that at time ¢ — A7 the
values for U(r — At} and P(r— 4t) are known at all nodes
{interior, boundary, and fictitions nodes) and that the
values of F(U(t— 41), t— A¢t) are known at all interior
nodes. Here are the steps to advance one substep and
determine these values at time ¢:

Step 1. Determine U(z) at all interior nodes using the
substep formula (6).

Step 2. Determine the velocity U(7) at all boundary
and fictitious points by solving the boundary conditions

Ui(t)_ug(x,-, I)=0\
Y, U, (1)=0
D4:1(V4'U;(I)):O

G U0+ U0 T U } for ¢ boundary (7

dr

+V:,P?‘(r)—vV4U,-(t)—f,-}=0

t,-DY (U;(1))=0 for iesecond
fictitious line,

where =1, n,— 1. Only the tangential components of the
momentumn equations are used in this step. The pressure
at time ¢ is not known yet but the numerical boundary
condition requires knowledge of t, - V, P(¢). This quantity is
approximated by extrapolating the pressure in time giving
an approximate value denoted by P*(¢). Since this
extrapolated value for the pressure on the boundary is only
used as a numerical boundary condition one can expect
from the theory that the overall accuracy and stability of the
method will not be aflfected [18]. At each point on the
boundary, equation (7) gives nine equations for the nine
unknown values of the velocity at the boundary and two
fictitious points.

Step 3. Solve the pressure equation with the remaining
boundary conditions,

na
A4Pi(t]=_ Z V4Um,i'D4mei+V4'f£(t)9

m=1

i € interior and boundary points

oU, (1)

n-V4P;(r)=—n-(—+(U,-(:)-V4)U,»(t) ®)

at

—v A4U,-(t)—f(t)), i € boundary points

DY P(n)=0, i € second fictitious line.

The velocity, U(r), is known at all points and thus the right-
hand sides in (8) can be determined. The numerical bound-
ary condition that came from the normal derivative of the
momentum equation appears here as a Neumann boundary
condition for the pressure.

Step 4. Given the pressure, P;(1) its gradient can be
computed at all interior points and thus F{U(z), t) can be
determined at all interior nodes. This completes the time
step.

In summary:

0. Given U(t—4t) and P(r— dr) at all nodes and
F(U(t — Az), t — At) at interior nodes:

1. Compute U(¢) at all interior nodes by making a time
step.

2. Compute U{¢) at boundary and fictitious points
using some of the boundary conditions

3. Compute the right-hand side to the pressure equation
and the right-hand side to the pressure boundary condition
and then solve for pressure everywhere, P(¢).

4. Compute F{U(¢), 1) at interior nodes.

Solving the Pressure Equation. The discretized pressure
equation takes the form of a linear system of equations:

AP=F (9)

Here P is the vector containing the values of P, at all grid
points. Normally the matrix 4 will be singular because the
pressure is only known up to an arbitrary constant. (This
may not be true if an inflow or outflow boundary condition
sets the level of the pressure). When A is singular, the
discrete system will only have a solution if F is in the column
space of 4, or, equivalently, if F is orthogonal to the null-
space of A‘. This compatibility condition is the discrete
analogue of the solvability condition for Laplace’s equation
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with Neumann boundary conditions which states that a
necessary condition for

Ap=1. xe £,

s (10)
—p=g, X €402,

on

to have a solution is that

Jgfdx = j g ds.

a2

With some numerical methods the discrete compatibility
condition is automatically satisfied. This is true, for
example, with methods using staggered grids. Abdallah [1]
shows how to design a scheme on nonstaggered grids so that
the discrete compatibility condition is exactly satisfied. In
the approach presented here the discrete compatibility con-
dition is not exactly satisfied {although it should be satisfied
to fourth-order accuracy). It has been found that a good
approach to solving (9) is to solve the augmented system

EHMEH

wherer =[1, 1, .., 17" is the right null vector of 4. Although
the matrix 4 is singular the above augmented system is non-
singular. If 1 denotes the left eigenvector of A (which never
has to be calculated) then the solution to the augmented
system satisfies

(11)

a=lr,—F (12)
I'r

AP=F—ar (13)

v'P=p. (14)

Equation (13) has a solution because the right-hand side is
orthogonal to 1. The general solution to (13) is equal to a
particular solution plus an arbitrary constant times the
right null vector. Equation (14) determines this arbitrary
constant. From (12) it can be seen that o measures the
degree to which the discrete compatibility condition is
satisfied; one can expect that « = O(#*) in the present case.
The value chosen for § sets the arbitrary constant in the
pressure.

The discrete pressure equation (11) is solved in various
ways. using sparse matrix solvers. Direct sparse solvers are
used for small problems and iterative solvers, such as bicon-
jugate gradient squared, GMRES, or multigrid [16, 147,
are used for larger problems.

4, SOME DETAILS OF THE IMPLEMENTATION

There are a number of implementation details that must
be considered when writing a general program for overlap-
ping grids. These include, for example, the discretization of
the equations near the boundaries (especially corners and
edges), interpoiation, and the initialization of the solution.
In this section we discuss how some of these problems were
addressed. Fortunately, since our grids are free of coor-
dinate singularities, it is not necessary to deal with that
difficulty,

4.1. Interpolation Points

The values on the boundary of a component grid, &,, that
overlaps a secondd component grid &, are obtained by inter-
polation. Interpolation is performed in the unit cube
coordinates of grid &, using triquartic interpolation with
a 5x 5 x5 stencil of points. In Chesshire er al. [8] it was
shown how to choose the order of accuracy of the interpola-
tion formula to be consistent with the discretization of the
PDE.

To be specific suppose that

X, x, = point on grid k,

to be interpolated from grid &,
v’ =4 (x; )= position of x,

in the unit cube of grid &,

i, ky =index of the lower corner
of the stencil to be
used for interpolation

r{i,, k;) = unit square coordinates

of the point (i,, k,).

Recall that x = d, (r}is the mapping from the unit cube onto
the region covered by component grid k,. The grid genera-
tion program CMPGRD supplies the coordinates 1/ of each
point that needs to be interpolated. The interpolation is
defined in terms of the Lagrange polynomials

q_(s):l_[f:o,#;(sfj)
, ;:O.j#f(i_j).

Let s= (s, 54, ..., 5,,}7 be the normalized position of the
point to be interpolated relative to the corner of the stencit
of interpolation points:

£, — talia, ky)

= R m=1,2, ..
T Ar,,

> M-
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The triquartic Lagrange interpolation formula is then

a a 4
Z ‘?j.(sl) z qu(sl) z qh(-"s) Ui G jad ke

A=0 J2=0 =0

Ul'l-h:

A standard utility routine is used to perform the interpola-
tion. The interpolation coefficients are stored and the
interpolation can be vectorized on machines with gather-
scattered operations.

4.2. Edges and Vertices

An important special case concerns obtaining solution
values at points that lie near edges and vertices of grids {or
corners of grids in 2D). Define a boundary edge to be the
edge that is formed at the intersection of adjacent faces of
the unit cube where both faces are boundaries of the
computational domain. Along a boundary edge, values of
the solution are required at the fictitious points in the region
exterior to both boundary faces. For example, suppose that

the edge defined by i, =n, ,, i =1y, and iy=n, 4, .., A3,
is a boundary edge. Values must be determined at the
exterior points i= (i, ,+m, ny .+ n, is)formn= -2, —1.
The following conditions are imposed:
d
— (V-u)=0, m=1,2, (15)
or,,
D6 12U117112—113 0. (16)

Here t, is the unit vector in the direction of the edge. Recall
that D, ,,U,=U, ... ;— U, and thus condition {16) is
an extrapolation into the region, of the component of the
velocity that is parallel to the edge. Equations (13), {16)
supply sufficient information to determine the values of the
fictitious points outside the edge, as will now be shown. By
expandingu{ —r,, —r,, ry)andu{ +r,, +r,, ry)ina Taylor
series about (0, 0, 0) it follows that

—1"2,]’3)

= 2u(0, 0, !’3)—0(1"1, r2:r3)

u(_rh

+%r%ur[r1(0 O r3)+r1r2ur1r2(0 0 r3)

+%r2 rzrz(OO r3)+0(1r1| +|r2| ) (17)

The derivatives u, ,, and u,,,, are tangential derivatives (on
the appropriate face) and can be computed from the given
boundary data. Here it is assumed that the given boundary
data are compatible at edges. The mixed derivative term,
u,,,, remains to be determined. When expanded by the

chain rule equations (15) can be written as

> ér, 8214, 2J",, 6u,
3 5;,6:' ar, Z 6r ax, or,

tn=1 ILn

for m=1, 2. The only term in these equations that is not
known from the boundary data is the mixed derivative term
u, ,,; and thus there are two equations for the three
unknown components of u, ,,. To obtain a third equation
for u, ,, the extrapolation condition (16) is combined with
the equation formed when the tangent vector t; is dotted
into (17) (with r,= —dr,, ry= —Ar,). After solving for
u,,,.,, (17) gives a fourth-order accurate approximation to
the four solution values that lie outside the boundary edge.

In two space dimensions, the values outside a corner are
determined in a similar manner, although the extrapolation
condition is not required.

At a vertex in 3D it follows from Taylor series that

2

(=)= 200) = a0+ T £, 5o O+ OCU)

nin

All of the second-order derivatives u, . are tangential
derivatives on one of the faces that meets at the vertex and
thus are known in terms of the given boundary values. Thus
the value of U, at the eight points which lie outside a vertex
can be computed.

4.3. Solving the Numerical Boundary Equations

The numerical boundary conditions (7) define the values
of U on two lines of fictitious points in terms of values of the
velocity on the boundary and the interior. The equations
couple the unknowns in the tangential direction to the
boundary se that in principle a system of equations for all
boundary points must be solved. However, when the grid is
nearly orthogonal to the boundary there is a much more
efficient way to solve the boundary conditions. The first step
in the algorithm is to solve for the tangential components of
the velocity from

U(1)—ug(x;, 1)=0

d
t,-1— U, U.i) -V U«
H {dt (1) + (U -V U0) for ieboundary

+V4P*(:)—vA4U,.(t)——f}=O

for iesecond

De,(Udn) =

fictitious line.

If the grid is orthogonal to the boundary then the discrete
Laplacian applied at boundary will not have any mixed
derivative terms. Therefore the only fictitious points appear-
ing in the equation applied at the boundary point (i,, iz, {1)
will be the two points (i, {5, i; —n)n=1, 2 (here we assume
that /; is in the normal direction to the boundary). Thus for
each point on the boundary (i, i», ;) the values of t,-U
can be determined at the fictitious points (i, iy, i3 —1)
and (iy, i, iy —2). There is no coupling between adjacent
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boundary points so no large system of equations need to
be solved. The tangential components of the velocity are
determined for all fictitious points on the entire boundary.
The second step is to determine the normai component of
the velocity at the fictitious points from

U, (1) —ug(x;, ¢

)
Vi U2}
Dy, (Vs - Ui (1))

0
0 for ieboundary.
0

If the grid is orthogonal to the boundary then the
divergence on the boundary can be written in the form

V-
! ar

! {E(e’zean-UH (eyest, -u)

e esey | on

d
+5;;{€192t2‘u]}s

where the e, are functions of 3x/3r. Note that only normal
derivatives of n-u appear in the expression for the
divergence. Thus, at a boundary point, (i, {5, i;), the stencil
for V,.-U will only involve the fictitious points at
({14 i3, i3—n), n=1, 2. Similarly, the stencil for D, (V,-U)
at a boundary will only involve the fictiticus points at
({1, i, i —n), n=1, 2. Thus there is no coupling between
adjacent boundary points and the unknown values forn-u
can be easily determined. Note that the equations for
D4, (V- U} will couple values for t,-U at fictitious points
along the boundary but these values have already been
determined in the first step.

In practice the boundary conditions are solved in a
correction mode—some initial guess is assumed for the
values at the fictitious points and a correction is computed.
If the grid is orthogonal or nearly orthogonal to the bound-
ary then the first correction will give an accurate answer to
the boundary conditions. If the grid is not orthogonal to the
boundary then the solution procedure can repeated one or
more times until a desired accuracy is achieved. This
iteration should converge quickly provided that the grid is
not overly skewed.

4.4. Discrete Divergence

The discrete divergence §,=V, - U; will not be identically
zero for the scheme described in this paper. By applying the
operator V, - to the momentum equations it follows that g,
will satisfy

d

for iethe interior
dt

6+ (U;-V)3,—vda,d,=2
6,=0

" D4n i=0

for /e on the boundary

for i€ on the boundary,
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where

7= {Va- [(U-¥) U]~ (U, %) 5,

kg
- Z V4 Um.i' D4x,.,U:} + {A4Pr’_ V[t : (VL.P;)}-
m=1
The discrete divergence will be nonzero due to the presence
of the forcing term 2,, which will be ¢(#*) when the solution
is smoothly represented on the grid. The interpolation
conditions can also act as source terms for the discrete
divergence.

In order to more effectively damp out any nonzero

divergence, a term proportional to d; can be added to the
pressure equation:

g
A4P+ Z V4Um‘j-D4mej—V:1-f—CdV'Y/,-fs,-=0,

m=1
1 1 1

+
Ax3

’%’.‘:
' i sz,.'

This introduces a linear damping term in the equation for
the divergence

d

dt 0,4+ (U;- V)8, —vdy6,=2,~Cv¥io,.
This technique of adding a damping term is well known and
has been used previously by a number of researchers in the
fields of incompressible flows (the MAC method of Harlow
and Welch [127) and electromagnetics (Marder [2217). In
the projection method and the MAC method, for example,
a term proportional to 8,/4¢ is added, chosen so that the
velocity ficld at the new time step is exactly divergence free.
Although in the present situation it is not possible to make
the discrete divergence exactly zero, adding such a term
does reduce the divergence.

4.5. Compatibility Conditions and Projecting the Initial
Conditions

The equation V-u=0 imposes some compatibility
constraints on the initial and “boundary conditions. For
example, the initial conditions should satisfy V.uy=0.
Imposing the divergence free condition up to the boundary
implies that the normal component of u, should equal the
normal component of the wvelocity specified on the
boundary, n-uy=n-u,,, see [10]. A further constraint
follows by integrating V -u over @ and using the Gauss
divergence theorem, giving {,, n-uds=0.

In many cases it may not be easy to generate initial
conditions that satisfy the compatibility conditions, It is,
however, well known how to take a given function u, and to
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project this function so that it is divergence-free. This
projection is defined by

u, =u, + Vg, xef2,

Uy=u,, X edQ

Ap=—V-u, xef2
n-Vg=0, x & 0.

The function w, will satisfy V-u,=0 and n-u, will equal
n-u, on the boundary. Note, however, that this projection
does not force the tangential components of u, to be
continuous at the boundary.

In the discrete case this projection is easy to compute
since the function ¢ satisfies the same cquation as the
pressure, but with different data. However, the discrete
projection operator does not make the discrete divergence
exactly zero for the same reason that the discrete divergence
is not exactly zero in the overall scheme. Thus if the initial
function, u,, is not smooth then it may be necessary to first
smooth u, before applying the projection. In practice a
sequence of smoothing and projection steps is applied until
the discrete divergence no longer decreases significantly.

5. NUMERICAL RESULTS

The method described in this paper has been implemented
in a Fortran program calied CGINS (standing for Com-
posite Grid Incompressible Navier—Stokes solver) [15]. A
single computer program handles both the two-dimensional
and the three-dimensional cases. The elliptic pressure equa-
tion is solved using CGES (Composite Grid Equation Solver)
which is a general purpose routine for the solution of PDE
boundary value problems [13] or by CGMG [16], a
multigrid solver for overlapping grids. Data structures and
memory allocation are managed by the DSK data structure
package [7]. The DSK package enables one to write codes
for a general class of overlapping grids such as those created
by the grid construction program CMPGRD [5, 8 ]. Those
readers interested in obtaining a copy of these programs and
the overlapping grid construction program CMPGRD,
should contact the author.

TABLE I

Errors for Flow in a Square at r = 1.0 and Estimated Convergence
Rate, e oc A7 (f=1,v=0.05)

Grid Errorinm Errorin p Maximum in V- u
20% 20 12x 1077 41x1t07? 12x107?
30 % 30 25%10°° 681074 12x107*

40 x 40 79x10-3 21x10°* 24x 1074

g 39 4.0 56

TABLE H

Errors for Flow in a Rotated Square at = 1.0 and Estimated
Convergence Rate, e « A7 (f =1, v=0.05)

Grid Errorin u Error in p Maximum in V-u
20x 20 42x 107 TIx107? 21x1072
30 %30 74 x 1074 2ix10-? [4x1677
40 x 40 23x1074 6.3x 10" 38x 10~
G 42 35 58

Results of some numerical computations in two and three
space dimensions are now presented. The primary interest
of these studies is to show the fourth-order convergence of
the spatial discretization. The time step is taken sufficiently
small so that the errors due to the time stepping are
negligible.

5.1. Results in Two Space Dimensions

Twilight-zone flow. Writing and debugging a large code
can be difficult. It is helpful to have some exact solutions so
that errors can be measured. In order to generate exact solu-
tions a very useful technique is to force the equations so that
the solution can be made equal to any given function. True
solutions created in this way will be called 1wilight-zone
Jflows after Brown [4]. For the initial stages of debugging it
is very useful to have a true solution for which the fourth-
order method should be exact. Thus for a rectangular grid
a true solution which is a quadratic polynomial should be
computed exactly and any errors in the program can be
quickly traced. For the convergence studies presented here,
however, a slightly more complicated true solution is used.
In two dimensions the following twilight-zone flow is
chosen:

Uye(X, p, 1) = (sin?(fx) sin(2fy) cos(2mt),
—sin(2fx) sin’( fv) cos(2nt))
PiruelX; y, 1) = sin( fx) sin( fy) cos(2nt)
In each case a value of v=0.05 is chosen. A damping term
for the divergence is added to the pressure equation, as

described in Section 4.4. The coefficient of the damping is
usually taken as C,=1.

TABLE 11

Errors for Flow in a Circle at # = 1.0 and Estimated Convergence
Rate, e cc h° (f =1, v=0.05)

Grid Errorinu Errorinp  MaximuminV.u
35x35usix1l 3Ix107% 10x10-2 1.7%x10°?
69x69U109x21  19x107* 64x107° 88x107*
G 40 40 43
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FIG. 1. Twilight-zone flow in a circle, overlapping grid, and contours
ofu,.

In Table I errors at ¢ = 1.0 are given for solving the equa-
tions on a square with sides of length 1. Indicated are the
maximum errors in uw, p, and V.u. The divergence is
calculated as V,.U, at all interior and boundary points,
although by construction (and in fact} this approximation
to the divergence is zero on the boundary. The estimated
convergece rate ¢, error o¢ 4%, is also shown. ¢ is estimated
by a least squares fit to the maximum errors given in the
table.

In Table II the errors are given for solving the problem on
a unit square which has been rotated about the origin by 45°
in the clockwise direction. This is a good test as the bound-
ary conditions are expressed in terms of the normal and
tangential components of the equations. The normal and
tangential velocities on the boundaries of this regions are
mixtures of u, and u,. The errors are different from the
previous example because the true solution has not been
rotated.

In Table HI the errors are given for solving the equations
on a region bounded by a circle of radius 1. For this

TABLE IV
Stokes Flow, Steady Flow Past a Cylinder near a Wall

Grid Errorinu Maximum inV -y
(27w (9x43) 73x 104 85x%107°
(533) v (17x83) 5.6x10°3 38x107*

G 37 45

o ——
o W

SRR A T

P et e

FIG. 2. Stokes flow past a cylinder near a moving wall, streamlines.

example a value of f=1 is taken in u,,, which permits a
more meaningful comparison to the previous tests as the
region is twice as wide, The composite grid for this domain
and contour lines of the computed solution u, are shown in
Fig. 1. For fourth-order discretizations two lines of inter-
polation points are used. The interpolation stencil is taken
as a 5x 5 square and interpolation is done 1 the (r,, r5)
coordinates as described earlier in this paper.

5.1.1. Comparison to an exact solution to Stokes equa-
tions. The Stokes equations result when the nonlincar
terms in the incompressible Navier-Stokes equations are set
to zero. There is a nontrivial exact solution to the Stokes
equations for flow between two rotating non-cocentric
cylinders reported in Wannier [27]. This solution is used
for code validation in [197. For flow past a cylinder next to
a moving wall (a limit as the radius of the outer cylinder
tends to infinity) this exact solution is

A+ Fy k k
Uy = —2(—:_1L)<(S+ yl+k—:(S—y))rFlog(k—;)
B 25+ y)?
A2

C 29(8—y)?
)

2; S
X A+ Fo)k—k,) — 2Bxy S
klk2

Wy =
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FIG. 3. Flow past a cylinder, horizontal velocity.

Here the wall, located at y =0, moves with speed U, the
cylinder has radius R and is a distance D from the wall, and

S=JD*—RY, k=x*+(s+p)V, k,=x"+(s—y)
D+S D (D+S)U
G=222 4= p=p 2"
D—-§ Ulog(G)’ log(G)
(D—-S)U U
c=2""22" p=_vu,  F=— .
log(G) log(G)

In Table IV we give the errors on two different overlapping
grids for the solution to this steady state probiem. In Fig. 2
we show the solution (streamlines) on the coarser grid.

5.1.2. Unsteady flow past a cylinder. As a final example
in two space dimensions, results are shown from the com-
putation of the flow past a cylinder. The cylinder is located
at the origin and has radius 3. The computational domain
is [x., x, 1% [Fa¥sl=[—2515]x[-3.535]. The
kinematic viscosity is 3. The initial conditions are a
uniform flow of (u,, u;) = (1, 0) that are projected accord-
ing to the algorithm described in Section 4.5. The top and
bottom boundaries are slip walls (n-u=0, 8,(t-u)=0).
Here n is the inward facing unit normal vector and t is the
unit tangent vector. The left boundary is inflow (n-u=1,
t-u=0), and the right boundary outflow (2, p= —2v/
(3(¥, — y.))?). The cylinder has no-stip boundary condi-
tions (u=0). The Reynolds number based on the cylinder
diameter and velocity | is Re=100. At this Reynolds
number the steady symmetric solution is unstable and an
unsteady flow develops. The unsteady flow takes a long time
to develop—it is not until time 7=40 that the Karman
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FIG. 5. Overlapping grid near the cylinder with contours of i, .

vortex street is clearly visible. See Figs. 3-5. The ratio of the
maximum divergence to the maximum vorticity was always
less than about 3 x 107 In Table V we give some sample
timings for this run.

5.2. Results in Three Space Dimensions
Twilight-zone flow. In three space dimensions the
equations are forced so that the true solution is known and
equal to
U, oX, Vs 2, 1) = (sin(fx) cos(f} cos(fz) cos(2nt),
cos{ fx) sin{ fv) cos( fz) cos(2nr),
— 2cos( fx) cos(fy) sin( fz) cos(2nrt)),
Parael X, ¥ 2, 1) = sin( fx) sin( f¥) sin( fz) cos(2nt).

TABLE Y
Times in Seconds for Flow Past a Cylinder (IBM RS/6000-530)

FIG. 4. Flow past a cylinder, vorticity, max = 26, min = —26.

Time/step Percentage
Pressure solve (Yale) 0.40 27
Interpolation (explicit) 0.024 2
Second-order Adams PC 0.66 43
Boundary conditions o1 7
Other 0.32 21
Total 1.5 100

Total number of grid points = 14,581
Fourth-order
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TABLE VI

Errors for Flow in a Cube at ¢ = 1.0 and Estimated Convergence
Rate, e oc 47 (f =1, v=0.05}

TABLE VII

Errors for Flow in a Spherical Sheli at = 0.5 and Estimated
Convergence Rate, e oc #° (f =1, v=003)

Grid Errorinu Error in p Maximum in V-u Grid Errorinu Errorinp  Maximum in V-u
202 9.6x 1077 T6x 1074 89x10* 257 % 7w 257 % T LIx107% 38x107° 26x 1073
30° LIx107° 13x107* 9.8x 1073 ITx10UITEx 10 22x107* T0x10~* 48x 107
g 43 44 54 497 x 130u497 % 13 7.3x 1075 22x107* 1.7x 1074
[ 4.0 42 4.2

In Table VI results are shown for flow in the unit cube with
Dirichlet boundary conditions on all walls.

In Table VII results are shown for computations on a
spherical shell. The spherical shell is the domain outside a
sphere of radius Ry=14 and inside a concentric sphere of
radius R, = 1. The grid for this region was created using two
component grids; one component grid covers the top half of
the domain and the second grid covers the bottom half.

Flow past a sphere.  As a final example we show the flow
past a sphere in a channel. The sphere has radius 1 with

centre at (0, 0, 0). The channel is the domain [x,, x,] x
[¥ar Yol X [24, 2,1 =[—22,2.2]°. The overlapping grid
consists of three component grids; two patches cover the
sphere and one rectangular grid fills the channel. The
number of grid points on each grid is (35%) U (25*x9)u
(257 x 9) and there are a total of 47,550 active grid points.
The initial conditions are a uniform flow of u= {1, 0, 0) that
are projected according to the algorithm described in
Section 4.5. The velocity is specified as inflow on the x=x,
face of the channel (u=(1, 0, 0)); the side walls have slip
boundary conditions (n-u=0, 4,(t,-u)=0); and the face

FIG. 6. Flow past a sphere, contours of u; at 1 =2 (» =0.03).
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TABLE VIII
Times in Seconds for Flow Past a Sphere (IBM RS/6000-530}

Time/step Percentage
Pressure solve {(GMRES) 19.0 42
Interpolation (implicit) 1.1 17
Second-order Adams PC 13.0 28
Beoundary conditions 4.1 9
Other 1.2 3
Total 45.0 100

Total number of grid points = 17,550
Fourth-order

x=x, is outflow (50, p+ p=given). The surface of the
sphere has no-slip boundary conditions (u=0). The
pressure equation was solved with GMRES. Figure 6 shows
contours of #; on some planes that pass through the
computational domain. Table VI gives timings for this
run. Since the grid is quite coarse, the number of interpola-
tion points (10,728) is a high percentage of the total number
of points. This explains why the interpolation takes so much
time.
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