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Abstract

We describe a fourth-order accurate finite-difference time-domain scheme for solving dispersive
Maxwell’s equations with nonlinear multi-level carrier kinetics models. The scheme is based on an
efficient single-step three time-level modified equation approach for Maxwell’s equations in second-
order form for the electric field coupled to ODEs for the polarization vectors and population den-
sities of the atomic levels. The resulting scheme has a large CFL-one time-step. Curved interfaces
between different materials are accurately treated with curvilinear grids and compatibility condi-
tions. A novel hierarchical modified equation approach leads to an explicit scheme that does not
require any nonlinear iterations. The hierarchical approach at interfaces leads to local updates
at the interface with no coupling in the tangential directions. Complex geometry is treated with
overset grids. Numerical stability is maintained using high-order upwind dissipation designed for
Maxwell’s equations in second-order form. The scheme is carefully verified for a number of two
and three-dimensional problems. The resulting numerical model with generalized dispersion and
arbitrary nonlinear multi-level system can be used for many plasmonic applications such as for ab
initio time domain modeling of nonlinear engineered materials for nanolasing applications, where
nano-patterned plasmonic dispersive arrays are used to enhance otherwise weak nonlinearity in the
active media.
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1. Introduction

The overall objective of this work is the development of efficient and high-order accurate nu-
merical schemes for modeling light-matter interaction with nonlinear materials. We develop novel
high-order finite-difference-time-domain (FDTD) numerical schemes for nonlinear active materials
with carrier kinetics modeled by real-valued rate equations and the auxiliary differential equation
(ADE) approach. The target nonlinear multilevel dispersive models and the geometry under con-
sideration are universal in the sense that the number of atomic levels and the number of transitions
(polarization vectors) are arbitrary, and the geometry can be of complex shapes with material
interfaces in 2D or 3D, which essentially overcome the limitations of existing methods for full
wave simulations in nonlinear active materials in the literature. There are a number of novel and
attractive features of our schemes. (1) Modified equation time-stepping leads to an extremely effi-
cient three-level single-step scheme that is fourth-order accurate in space and time and has a large
CFL-one time-step. (2) High-order accuracy at curved boundaries and interfaces is achieved using
conforming grids and compatibility conditions. (3) Interfaces are treated in an efficient way using a
hierarchical modified equation (HIME) approach that provides local updates to the interface ghost
points and requires no nonlinear solves. (4) Numerical stability on overset grids is achieved using a
high-order upwind dissipation for Maxwell’s equation in second-order form. Upwind dissipation for
wave equations in second-order form was first proposed in [1] and extended the ideas of Godunov’s
upwind scheme for first-order systems of equations. The original scheme in [1] was extended to
Maxwell’s equations in [2]. An optimized version of this latter approach is used in the numerical
scheme given in this article.

The current work substantially expands the previous work [3, 4] on general linear dispersive
materials by employing multi-level carrier kinetics to account for diverse nonlinear effects. Similar
to [3, 4], the proposed schemes are implemented in the Overture framework, and then tested using
overlapping grids over complex two- and three-dimensional geometries. Figures 1 and 2 depict an
example of a two-dimensional geometry and a zoom-in view of the associated overset grids.

Following the early theoretical works (see, e.g. [5]) and their original numerical FDTD ap-
proximations [6–9], propagation and scattering of light in all our schemes are modeled classically
by the Maxwell’s equations, while the nonlinear medium is described by real-valued multi-level
rate equations [10–16]. The interaction between light and matter is then coupled by real-valued
atomic dipole moment (polarization) equations using the ADE technique, which is also adopted
in the models of general linear dispersive materials in [3, 4]. Such nonlinear multilevel models are
generalization of the two-level systems [6, 17].

Figure 1: Left: overset grids for three meta-atoms. Right: zoomed-in view of the overset grids showing the curvilinear
interface-fitted grids. Cartesian grids cover most of the domain and very efficient schemes can be used on these grids.
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Figure 2: Gaussian plane wave hitting three four-level active-material meta-atoms; electric field norm ‖E‖ (left),
y-component of the total polarization Py (middle) and ground-state population density N0 (right)

Perturbation theory has been and still remains one of the most popular approaches to approx-
imate nonlinear material responses in optics. With this approach, the optical material response
in the time and frequency domains is modeled employing the power series expansions of a weak
nonlinear part of susceptibility. The method has become imperative for the initial numerical anal-
ysis of Stockman’s spasers [18, 19]. Classical electrodynamics with the quantum-mechanical effects
of the gain medium introduced through the perturbation nonlinear susceptibility terms have been
initially adopted to describe spasing (see, e.g. [20–23]). Thus, Li and Yu [20] derived and computed
the gain threshold requirements for core-shell single-particle spasers, accounting for the interband
transitions of the plasmonic metal core. Kristanz et al. [23] analyzed the power balance and
heating to guide the spaser design in terms of the allowed pumping intensities, duration, and ex-
pected output radiation and thermal load. These studies have been of ultimate importance for
analyzing the parameters affecting the threshold, including the resonant wavelength, the refractive
index of the background host material, and the dimensions of the core and shell of regular-shape
(mainly spherical or spheroidal) spasers. While such models are capable of adequately predict-
ing the conditions for loss compensation and the transition to the spasing regime for simplified
geometries and operation regimes, as the designs of spaser systems are becoming more involved,
full-wave numerical analysis that can unlock the temporal and spatial details of a given spaser are
required. In general, the perturbation theory has many restrictions. For example, the modeling
techniques employing this classical approach are capable of neither capturing complete transient
and irreversible effects nor accounting for many critical quantum phenomena. They may also fail to
converge in some crucial real-life cases [24] and are inadequate for modeling several distinct classes
of nonlinearities, e.g., epsilon-near-zero materials [25]. In contrast, the time-domain multiphysics
techniques are considered amongst the most accurate numerical frameworks that can account for
the quantum-mechanical nature of the gain and plasmonic materials, naturally combining nonlin-
ear and thermal effects in a single computational domain with complex structural and material
composition [7, 8, 11, 26–28].

Early carrier kinetics approaches to multiphysics modeling of nonlinear light-matter interaction
were introduced for describing gain media in response to external pulsed excitation [5, 6], aiming
at the numerical analysis of the dynamics of pumping, population inversion, and saturation. The
multi-level rate equation technique has been widely used for simulating various atomic systems,
for example, in modeling 1-electron system with 4 levels and 6 levels [10], 2-electron system with
4 levels [8], saturable absorption [13], reverse saturable absorption [14], and 2-photon absorption
[15]. Modeling multi-level active medium using the rate equations together with the ADE-type
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polarizations is equivalent to the first-order optical Bloch equations formulated using density matrix
[29, 30] for two-level systems, or multi-level systems consisting of pairwise atomic level transitions
[8, 31, 32]. For general multi-level atomic systems, such as those with V , Λ or cascade configurations
[33], the equivalence does not hold. However, one could fit the multilevel models using, for example,
experimental data by leaving out non-essential transitions [10].

There have been many numerical methods that were developed for the complex-valued optical
Bloch equations based on the density matrix, see the review paper [34] for example, among which
the finite difference methods have been prevailing in the time-domain multiphysics techniques. In
the FDTD regime, Yee’s scheme [35] was widely used. For instance, in [36], a weakly decoupled and
Strang splitting time discretizations of Maxwell-Bloch system that preserves the carrier populations
was discussed, with a feature of using different time marching for diagonal and off-diagonal entries
of the density matrix. Yee’s scheme was extended to the light-matter interactions with ultrashort
pulse in anisotropic media for the unidimensional case in [37], and bidimensional case in [38], where
a pesudo-spectral time-domain method was also discussed, along with similar splitting schemes for
Bloch equations. In [39], a Maxwell-Bloch solver for two-level atomic systems was developed. The
aim of this paper is to complement the literature by developing high-order accurate FDTD schemes
for arbitrary multilevel atomic systems in geometry with complex shaped boundaries and interfaces
in two and three space dimensions.

The rest of the paper is outlined as follows. In Section 2, we present the mathematical models
of nonlinear dispersive materials that use multi-level rate equations, employing the ADE technique.
Here, we prescribe the initial conditions and boundary conditions, as well as the interface jump
conditions for Maxwell’s equations written as a vector wave equation for the electric field. In
Section 3, the second-order accurate finite difference time-stepping schemes for nonlinear models in
homogeneous materials are discussed first, whereas the fourth-order accurate schemes that employ
the second-order results and the modified equation approach are presented in the sequel. The
second- and fourth-order accurate numerical interface treatments are discussed in Section 3.3.
Lastly, several numerical examples in both two and three space dimensions are given in Section 4.
Concluding remarks are given in Section 5.

2. Governing equations

We consider the solution to the initial-boundary-value (IBVP) problem for Maxwell’s equations
in a domain Ω ⊂ Rnd in nd space dimensions. The domain consists of Nk different material regions
Ωk with Ω = ∪Nkk=1Ωk. Let Γk,k′ denote the interface between material k and k′. A given region Ωk

may be governed by the isotropic Maxwell equations, the linear dispersive Maxwell’s equations as
discussed in [4] or the following nonlinear equations,

∂2
tE = c2∆E− ε−1

0

Np∑
m=1

∂2
tPm, (2.1a)

∂2
tPm + b1,m∂tPm + b0,mPm =

Nn∑
`=1

am,`N`E, m = 1, 2, . . . ,Np, (2.1b)

∂tN` =

Nn−1∑
ˆ̀=0

α`,ˆ̀Nˆ̀ +

Np∑
m=1

β`,mE · ∂tPm, ` = 0, 1, 2, . . . ,N` − 1. (2.1c)

Equations (2.1), called the Maxwell-MLA system, define Maxwell’s equations in second-order form
for the electric field coupled to a multi-level carrier kinetic model. The kinetic model consists
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of Nn atomic levels for population densities N` and Np polarization vectors Pm. The parameter
c = 1/

√
ε0µ0 is the speed of light in a vacuum, with ε0 and µ0 the vacuum permittivity and

permeability, respectively. The parameters b1,m, b0,m, am,`, α`,k , and β`,m are all real and chosen
to model the transitions in a particular active material, either based on theory or experimental
data. In a typical case the sum of the population densities N` will be constant, often normalized to
be one. Note that in subsequent discussions the bounds on the sums in equations in (2.1) will often
be suppressed for notational brevity. Also note that, following our previous work [3, 4, 40], we solve
for E using Maxwell’s equations in second-order form. The advantages of using the second-order
form Maxwell’s equations are described, for example, in [40].

P30 τ30 τ32

P21 τ21

τ10

N0

N1

N2

N3

Figure 3: Jablonski diagram for a 4-level atomic system

The kinetic model in (2.1c) is quite general and can represent transitions in a variety of multi-
level atomic systems. Consider, for example, the four-level system depicted in Figure 3. This
system consists of four energy levels with population densities N`, ` = 0, 1, 2, 3. Here we change
notation slightly to be consistent with the literature. This is a model for lasing in a gain medium.
Energy is pumped into the ground level, where the electrons are excited to the highest energy
level 3, then relaxed to lower energy levels. With proper constraints on the relaxation time τ ’s, a
population inversion (more populations at a higher energy level) between levels 1 and 2 will take
place, which leads to lasing. The corresponding rate equations for the population densities N` are
given by

∂tN0

∂tN1

∂tN2

∂tN3

 =


0 τ−1

10 0 τ−1
30

0 −τ−1
10 τ−1

21 0

0 0 −τ−1
21 τ−1

32

0 0 0 −τ−1
30 − τ

−1
32



N0

N1

N2

N3

+


−(~ω30)−1 0

0 −(~ω21)−1

0 (~ω21)−1

(~ω30)−1 0


E · ∂tP30

E · ∂tP21

 ,
where ~ is the reduced Planck constant, ω21, ω30 are the transition frequencies between the paired
levels, and τ10, τ30, τ21, τ32 are the relaxation times from the higher energy level to corresponding
low level respectively. The associated polarizations can be expressed as

∂2
tPji + γji∂tPji + ω2

jiPji = κji(Ni −Nj)E, ji = {30, 21}, (2.2)

and thus the tensor a with entries am,n in the polarization equation (2.1b) is given by

a =

[
κ30 0 0 −κ30

0 κ21 −κ21 0

]
, (2.3)

while P1 = P30, and P2 = P21.
To define a well-posed IBVP, the Maxwell-MLA equations (2.1) are augmented with appropriate

initial conditions, boundary conditions and interface conditions. Initial conditions are required for
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E, ∂tE, Pm, ∂tPm and N`. For the purposes of this article, the nonlinear materials will be bounded
by linear materials and thus will not require boundary conditions. Boundary conditions at physical
or far-field boundaries for linear materials will be specified in the usual way as discussed in [4].
Note that the second-order form of the equations for E uses the additional boundary condition
∇ · E = 0. At an interface Γk,k′ between sub-domains Ωk and Ωk′ the following primary interface
conditions hold [

n×E
]
Γk,k′

= 0, (2.4a)[
n · (ε0E + P)

]
Γk,k′

= 0, (2.4b)[
µ−1

0 n×∇×E
]
Γk,k′

= 0, (2.4c)[
∇ ·E

]
Γk,k′

= 0, (2.4d)

where n is defined to be the normal that points from domain Ωk into Ωk′ .
The well-possedness of the IBVP for the Maxwell-MLA system (2.1) is discussed in Appendix

B. The problem is well-posed and the solutions to these nonlinear equations will exist for at least
short times. Long-time existence can be shown for a restricted class of commonly used systems,
such as the four-level system described above. For such systems an L2-energy can be found that
shows the solutions have at most bounded exponential growth in time.

3. Numerical schemes

The basic approach to discretization of the MLA equations (2.1) uses finite-difference approxi-
mations and modified-equation time-stepping. This approach follows the path previously advocated
for the nondispersive isotropic Maxwell’s equations in [40], later extended to linear dispersive ma-
terials in [3], and subsequently to linear dispersive materials with interfaces in [4]. The primary
developments described in the present article are the formulation and application of methods for the
equations of nonlinear electromagnetics for active media, and a novel approach to the treatment of
interfaces that eliminates the need for the solution of coupled nonlinear systems of equations along
material interfaces. The treatment of complex geometry will again make use of overlapping grids,
which is discussed briefly in Section 3.1. Second-order and fourth-order accurate discretizations are
then discussed in Sections 3.2.1 and 3.2.2 respectively. The discretization of interface equations is
then presented in Section 3.3. See Algorithm 1 for the overview of the developed algorithms and
the arrangements of this section.

3.1. Overlapping grids

As indicated in the introduction, geometric complexities in the simulation domain will be ad-
dressed using overlapping (sometimes referred to as overset, or chimera) grids. An example is
depicted in Figs. 1 and 2, where a light pulse is propagated through active material in the shape
of the letters “R”, “P”, and “I”. Each computational subdomain is discretized using a composite
overlapping grid consisting of a set of thin boundary fitted grids overlaying a Cartesian background
grid, see e.g. Fig. 1. The primary motivation for our use of composite overlapping grids is to en-
able the use of efficient finite difference schemes on structured grids, while simultaneously treating
complex geometry with high-order accuracy up to and including boundaries and material inter-
faces. In the composite overlapping grid approach, the simulation domain Ω, is divided into its
geometric components Ωk (e.g. the “R” domain in Fig. 1). Each sub-domain Ωk is then covered
by a composite grid Gk, consisting of a set of component grids Gk,g, g = 1, . . . , Nk. A simple ex-
ample composite grid in two space dimensions is illustrated in Fig. 4. Each component grid Gk,g
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Algorithm 1 Overview of the developed algorithms
1: Generate overset grids for the geometry; . Sect. 3.1
2: Initialization;
3: while t < Tfinal do . Begin time-stepping loop
4: for j in each grid G do . Sect. 3.2.1, 3.2.2
5: for m = 1, . . . ,Np do
6: Update Pn+1

m,j ;
7: end for
8: Update En+1

j ;
9: for ` = 0, . . . ,Nn − 1 do

10: Update Nn+1
`,j ;

11: end for
12: end for
13: Apply boundary and interface conditions; . Sect. 3.3.1, 3.3.2
14: tn+1 = tn + ∆t, n = n+ 1;
15: end while . End time-stepping loop

G1

G2

G1

interpolation
ghost

unused

G2

Figure 4: Left: an overlapping grid consisting of two structured curvilinear component grids, x = G1(r) and x =
G2(r). Middle and right: component grids for the square and annular grids in the unit square parameter space r.
Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to
apply boundary conditions.

is a logically rectangular, curvilinear grid defined by a smooth mapping from a reference domain
r ∈ [0, 1]nd (i.e. the unit square in 2D or unit cube in 3D) to physical space x,

x = Gk,g(r), r ∈ [0, 1]nd , x ∈ Rnd . (3.1)

Grid points are classified as discretization points (where the PDE or boundary/interface conditions
are applied), interpolation points (where solutions are interpolated from other component grids)
or unused points. Throughout the present work, ghost points are use to implement boundary
and interface conditions. The overlapping grid generator Ogen [41] from the Overture framework
is used to construct the overlapping grids. Overlapping grid interpolation is performed using a
tensor-product Lagrange basis with quadratic polynomials for the second-order accurate scheme,
and quartic polynomials fourth-order scheme, as required to maintain accuracy [42].

3.2. Discretizations for nonlinear and active media

Discretization of the governing PDE system (2.1), on each component grid Gk,g, is performed in
the reference coordinate system r. The overall approach taken here follows the general principles
described in [3, 40], and uses a single-step modified equation (ME) scheme (sometimes referred to
as a space-time or Lax-Wendroff time stepper). To describe the schemes, denote xj ∈ Rnd as a point
on a component grid, where j = (j1, . . . , jd) ∈ Znd is a multi-index. Generically, ME time stepping
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schemes are based on a Taylor expansion of discrete approximations to temporal derivatives. For
example, discretization of the leading second derivative terms in (2.1a) and (2.1b) can be based
on the usual 3-level approximation of the second time derivative along with appropriate correction
terms to obtain the required accuracy. Specifically, for schemes of order p = 2q

Wj(t+ ∆t)− 2Wj(t) + Wj(t−∆t)

∆t2
=

q∑
ν=1

2∆t2(ν−1)

(2ν)!
∂2ν
t Wj(t) +O(∆tp), (3.2)

where ∆t is a time step size, and Wj(t) indicates a generic grid function and could be any of
Ej(t),Pm,j(t), N`,j(t). On the other hand, (2.1c) is a first-order ODE and so the schemes are based
on the forward difference approximation to the first derivative

Wj(t+ ∆t)−Wj(t)

∆t
=

p∑
ν=1

∆tν−1

ν!
∂νtWj(t) +O(∆tp). (3.3)

Repeated time differentiation of the PDE system (2.1) is then used to define the various terms
on the right-hand-side of (3.2) and (3.3). To obtain a fully discrete scheme, spatial derivative
operators are then replaced with difference approximations4. See [3, 40] for additional details of
this derivation for the non-dispersive and linearly dispersive Maxwell’s equations respectively.

While the ME prescription above is correct and effective, straightforward implementation for the
nonlinear dispersive equations (2.1) will necessitate the need to solve a globally coupled system of
nonlinear equations at each time level. A similar effect was observed for linear dispersive materials
in [3], which led to the development of a redesigned ME scheme using a predictor-corrector method-
ology using a mixture (a hierarchy) of second- and fourth-order approximations. This methodology,
subsequently referred to as a hierarchical modified equation (HIME) scheme, is adapted here for
the nonlinear equations, and schemes of order 2 and 4 are described in Sections 3.2.1 and 3.2.2
respectively.

3.2.1. Second-order accurate scheme

In this section we outline the second-order accurate Maxwell-MLA scheme. A pseudo-code
version of this algorithm is given in Appendix A.1. In describing the discretization of (2.1),
let Enj ,P

n
m,j, N

n
`,j be approximations of E(xj, t

n),Pm(xj, t
n), and N`(xj, t

n), respectively, at time
tn = n∆t. Further, let ∆ph denote a pth-order accurate approximation to the Laplace operator
∆, and D+t, D−t, and D0t denote the usual forward, backward, and central divided difference
approximations to the time derivative, as given by

D+tW
n
j

def
=

Wn+1
j −Wn

j

∆t
, D−tW

n
j

def
=

Wn
j −Wn−1

j

∆t
, D0tW

n
j

def
=

Wn+1
j −Wn−1

j

2∆t
, (3.4)

for a generic grid function Wn
j ≈W(xj, t

n).
Using this notation, and the expansions (3.2) and (3.3), second-order accurate approximations

4Both conservative and non-conservative representation of the discrete Laplacian may be used, see [40] for addi-
tional details.
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to (2.1a)–(2.1c) are straight forward, with perhaps the simplest5 being given by

D+tD−tE
n
j = c2∆2hE

n
j − ε−1

0 D+tD−tP
n
j , (3.5a)

D+tD−tP
n
m,j + b1,mD0tP

n
m,j + b0,mP

n
m,j =

∑
`

am,`N
n
` E

n
j , (3.5b)

D+tN
n
`,j = D2tN`|nj +

∆t

2
D2ttN`|nj , (3.5c)

for m = 1, . . . ,Np and ` = 0, . . . ,Nn − 1, with Pn
j

def
=
∑

mPn
m,j. The notation D2tN`|nj and

D2ttN`|nj , used in (3.5c), is meant to indicate 2nd-order accurate approximation to the continuous

time derivatives ∂tN`|nj and ∂2
tN`

∣∣n
j

respectively. In principle there are a number of choices for
these approximations, e.g. backward differencing or implicit temporal averaging. However, in this
work we use the Taylor series approach with

D2tN`|nj
def
=
∑

ˆ̀

α`,ˆ̀N
n
ˆ̀,j

+
∑
m

β`,mE
n
j ·D0tP

n
m,j, (3.6a)

D2ttN
n
` |
n
j

def
=
∑

ˆ̀

α`,ˆ̀D2tNˆ̀

∣∣n
j

+
∑
m

β`,mD0tE
n
j ·D0tP

n
m,j +

∑
m

β`,mE
n
j ·D+tD−tP

n
m,j, (3.6b)

since it avoids the need for additional storage (as in backward differencing), or the solution to a
nonlinear system (as in temporal averaging).

The fully discrete system (3.5) is a complete set of nonlinear equations defining the solution
state at the new time, tn+1. However, from the perspective of implementation, there is significant
benefit in realizing that Pn+1

m,j are decoupled from other quantities at the next time level, i.e. En+1
j

and Nn+1
`,j . As a result, they can be updated independently using (3.5b) as

Pn+1
m,j =

1

1 + b1,m
∆t
2

(
2Pn

m,j −Pn−1
m,j + b1,m

∆t

2
Pn−1
m,j −∆t2b0,mP

n
m,j + ∆t2

∑
`

am,`N
n
` E

n
j

)
. (3.7)

Subsequently, En+1
j can be trivially determined from (3.5a). Finally, Nn+1

`,j can be obtained using

(3.5c), (3.6a) and (3.6b), where all terms on the right-hand-side of (3.5c) are known because Pn+1
m,j

and En+1
j have been previously computed. This decoupling is a major difference from the schemes

developed in [3, 4], where the solution update required the solution of a coupled system of linear
equations locally at each grid cell xj. In the present work this would translate to a nonlinear system,
which may introduce numerical subtleties such as solver tolerances, choice of nonlinear root, etc.

3.2.2. Fourth-order accurate scheme

Following the ME approach, higher-order accurate approximations to (2.1a)–(2.1c) can be ob-
tained by retaining additional correction terms in the Taylor expansions of the discrete temporal
operators, e.g. (3.2) and (3.3). Typically, the governing equations would be used to exchange tem-
poral for spatial derivatives, or in the case of ODEs to successively reduce the order of temporal
derivation. However as previously mentioned, this would lead to a globally coupled nonlinear sys-
tem that would need to be solved at each time step. An alternative, first discussed in [3] for linear

5Other discretizations involving alternate temporal weighting, e.g. b0,m
(

1
4
Pn+1
m,j + 1

2
Pn
m,j + 1

4
Pn−1
m,j

)
in place of

b0,mPn
m,j, are also possible and could serve as the basis for higher-order schemes, but these are not pursued here.
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dispersive materials, uses predictions from lower-order schemes, e.g. (3.5), to approximate the cor-
rection terms to the requisite accuracy, and thereby enable a local explicit solution update at each
grid point. This approach is dubbed HIME, for Hierarchical Modified Equation. A pseudo-code
algorithm for the fourth-order accurate Maxwell-MLA scheme is given in Appendix A.2.

To describe the fourth-order accurate HIME scheme, we first make some convenient notational
definitions. Let the predicted approximation to the fields, polarization vectors, and carrier pop-
ulation densities at the new time tn+1, as defined by the second-order accurate scheme (3.5), be
denoted En+1,∗

j , Pn+1,∗
m,j , and Nn+1,∗

`,j respectively. Difference approximations based on these pre-
dictions will be colorized blue for clarity, and the difference operators will be applied to predicted
“star” quantities, e.g.

D0tE
n,∗
j

def
=

En+1,∗
j −En−1

j

2∆t
, D+tD−t∆2hP

n,∗
j

def
=

∆2hP
n+1,∗
j − 2∆2hP

n
j + ∆2hP

n−1
j

∆t2
.

With this notation, the fourth-order accurate HIME scheme, with any terms involving predicted
values highlighted in blue for clarity, is

D+tD−tE
n
j −

∆t2

12

(
c4∆2

2hE
n
j − ε−1

0 c2D+tD−t∆2hP
n
j − ε−1

0 (D+tD−t)
2Pn

j

)
= c2∆4hE

n
j − ε−1

0 D+tD−tP
n
j +

∆t2

12
ε−1
0 (D+tD−t)

2Pn
j , (3.9a)

D+tD−tP
n
m,j −

∆t2

12
D2ttttPm|nj + b1,m

(
D0tP

n
m,j −

∆t2

6
D2tttPm|nj

)
+ b0,mP

n
m,j =

∑
`

am,`N
n
`,jE

n
j , (3.9b)

D+tN
n
`,j = D4tN`|nj +

∆t

2
D4ttN`|nj +

∆t2

6
D2tttN`|nj +

∆t3

24
D2ttttN`|nj , (3.9c)

for m = 1, . . . ,Np and ` = 0, 1, . . . ,Nn − 1. Here the two red terms are included in (3.9a) because
they naturally occur in the ME formulation, although they cancel and therefore need not appear
in the final discretization. Further, ∆4h denotes the fourth-order accurate discrete laplacian, D4t

and D4tt indicate 4th-order accurate approximation to the continuous time derivatives ∂t and ∂2
t

respectively, and D2ttt and D2tttt indicate 2nd-order accurate approximation to the continuous time
derivatives ∂3

t and ∂4
t respectively (definitions of these terms are presented below). The various

orders of accuracy for each term are consistent with the requirements for overall 4th-order accuracy
of the scheme, as discussed for example in [3, 4, 40], and ultimately yield a fully 4th-order scheme
in a compact spatial stencil using only three time levels. Definitions of approximations to the terms
∂3
tPm

∣∣n
j
, ∂4

tPm

∣∣n
j
, ∂tN`|nj , ∂2

tN`

∣∣n
j
, ∂3

tN`

∣∣n
j
, and ∂4

tN`

∣∣n
j
, as needed in (3.9) appear in Appendix C.

As in the case of the second-order discretization, the fourth-order HIME scheme permits a
decoupled update of all quantities at the new time. The procedure is similar to second-order
where first the polarization vectors are updated, then the fields, and finally the carrier population
densities. Because this represents a significant advantage of the HIME versus traditional ME
schemes for multilevel nonlinear electromagnetics, it is useful to describe this update in detail.
After performing the predicted second-order update in a local stencil, the polarization vectors are
updated as

Pn+1
m,j =

1

1 + b1,m
∆t
2

(
2Pn

m,j −Pn−1
m,j +

∆t4

12
D2ttttP

∗
m|
n
j +

∆t

2
b1,mP

n−1
m,j

+
∆t4

6
b1,mD2tttP

∗
m|
n
j −∆t2b0,mP

n
m,j + ∆t2

∑
`

am,`N
n
`,jE

n
j

)
. (3.10)
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Subsequently the electric fields can be updated as

En+1
j = 2Enj −En−1

j +
∆t4

12

(
c4∆2

2hE
n
j − ε−1

0 c2D+tD−t∆2hP
n
j

)
+∆t2c2∆4hE

n
j −∆t2ε−1

0 D+tD−tP
n
j . (3.11)

Finally the carrier populations are updated as

Nn+1
`,j = Nn

`,j + ∆t D4tN`|nj +
∆t2

2
D4ttN`|nj +

∆t3

6
D2tttN`|nj +

∆t4

24
D2ttttN`|nj . (3.12)

3.3. Numerical interface approximations

We now proceed to a description of the numerical treatment of interface conditions (2.4) in
the framework of HIME time-stepping. Throughout this section, we assume that 2nd- or 4th-
order solution approximations have been time advanced to time level tn for all grid points on the
domain interiors and along material interfaces. Furthermore, it is assumed that the grids across the
interface are matched at point j in the tangential direction, see Figure 5 and Figure 6. The discrete
interface conditions are then enforced using ghost cells, and the primary purpose of the present
section is to describe how these ghost cells are determined at tn. Once solution approximations
in the ghost cells have been determined, subsequent time stepping using (3.5) or (3.9) will yield
fully 2nd- or 4th-order accurate approximations. Note that to simplify presentation, the following
discussion will be restricted to the case of Cartesian grids. The algorithms for the curvilinear case
are very similiar and are presented in Appendices E and F in [43].

Determination of solution approximations in ghost cells naturally relies on interface conditions
containing spatial derivatives, since undifferentiated terms constrain the solution directly on the
interface. Primary interface conditions (2.4c) and (2.4d) already involve the requisite derivative
operators, but (2.4a) and (2.4b) do not. Following the approach described in [4, 40], the primary
interface conditions (2.4a) and (2.4b) are therefore time differentiated, and the governing PDEs
used to yield

[n× ∂2
tE]I = [n× (c2∆E− ε−1

0 ∂2
tP)]I = 0, (3.13a)

[n · (ε0∂2
tE + ∂2

tP)]I = [n · (ε0c2∆E)]I = 0, (3.13b)

which are used in place of (2.4a) and (2.4b). The full set of primary interface conditions that are
used to determine solution approximations in ghost cells are therefore

[n× (c2∆E− ε−1
0 ∂2

tP)]I = 0, (3.14a)

[n · (ε0c2∆E)]I = 0, (3.14b)[
µ−1

0 n×∇×E
]
I

= 0, (3.14c)

[∇ ·E]I = 0. (3.14d)
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3.3.1. Second-order accurate interface approximation

Left grid

interface

jL

Right grid

interface

jR

adjacent ghost

required ghost

stencil point

known data

Figure 5: Local stencil for filling in the interface ghost values for E for the second-order accurate scheme on Cartesian
grids. The points with indexes jL and jR correspond to a common physical point xjL = xjR on the interface. The
two required ghost values depend on the solution values at the stencil points . There is no tangential coupling
with adjacent ghost points and there are no nonlinear iterations required to update the ghost values.

Discretization of the primary interface conditions (3.14) to second-order accuracy is straight-
forward, and yields [

n×
(
c2∆2hE

n
j − ε−1

0 D+tD−tP|nj
)]

= 0, j ∈ Γh, (3.15a)[
n · (ε0c2∆2hE

n
j

]
= 0, j ∈ Γh, (3.15b)[

µ−1
0 n×∇2h ×Enj

]
= 0, j ∈ Γh, (3.15c)[

∇2h ·Enj
]

= 0, j ∈ Γh, (3.15d)

where Γh indicate the set of indices along the material interface, and ∆2h and ∇2h denote second-
order accurate finite differences. Note that the term D+tD−tP|nj involves Pn+1

j , i.e. P at a

future time, which is not known. However, (3.7) can be used to determine Pn+1
j based on known

information at tn. Equivalently, the definition of Pn+1
j from (3.7) can be inserted directly in

D+tD−tP|nj to give

D+tD−tP|nj =

Np∑
m=1

(
1

∆t2
+ b1,m

1

2∆t

)−1 (
2Pn

m,j −Pn−1
m,j + b1,m

∆t

2
Pn−1
m,j

−∆t2b0,mP
n
m,j + ∆t2am,`N

n
` E

n
j

)
− 2

∆t2
Pn

j +
1

∆t2
Pn−1

j . (3.16)

Clearly, the definition of D+tD−tP|nj in (3.16) is not coupled with any unknown ghost values at
time level tn, and so the interface condition (3.15a) can be expressed[

n× c2∆2hE
n
j

]
I

=
[
n× ε−1

0 D+tD−tP|nj
]
I
, j ∈ Γh, (3.15a*)

where the right-hand side is considered to be known data via (3.16). The system of equations
(3.15a*) along with (3.15b) – (3.15d) therefore defines values of E in the ghost cells (see Figure 5).
An additional advantageous property of this approach is that ghost values for En are decoupled
from the ghost values for Pn, a property that will be referred to as EP-decoupling. In fact no
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ghost values for Pn are needed in the actual update for this second-order scheme (3.5), although
in practice extrapolation is used to define values in the ghost so that the entire grid function is
defined.

3.3.2. Fourth-order accurate interface approximation

Left grid

interface

jL

Right grid

interface

jR

adjacent ghost

required ghost

stencil point

known data

Figure 6: Local stencil for filling in the interface ghost values for E for the fourth-order accurate scheme on Cartesian
grids. The points with indexes jL and jR correspond to a common physical point xjL = xjR on the interface. The
four required ghost values depend on the solution values at the stencil points . There is no tangential coupling
with adajcent ghost points and there are no nonlinear iterations required to update the ghost values.

As we employ fourth-order accurate central finite difference scheme, we have two ghost lines at
both sides of the interface, which requires additional four jump conditions obtained by differenti-
ating the four primary interface conditions (2.4) in time:

[n× ∂4
tE]I = 0, (3.17a)

[n · (ε0∂4
tE + ∂4

tP)]I = 0, (3.17b)[
µ−1

0 n×∇× ∂2
tE
]
I

= 0, (3.17c)

[∇ · ∂2
tE]I = 0, (3.17d)

then we use the compatibility condition again and obtain the following additional four interface
conditions

[n× (c4∆2E− c2ε−1
0 ∆∂2

tP− ε−1
0 ∂4

tP)]I = 0, (3.18a)

[n · ε0(c4∆2E− c2∆∂2
tP)]I = 0, (3.18b)[

µ−1
0 n×∇× (c2∆E− ε−1

0 ∂2
tP)

]
I

= 0, (3.18c)

[∇ · (c2∆E− ε−1
0 ∂2

tP)]I = 0. (3.18d)

Fourth-order accurate approximation of the primary interface conditions (2.4) and the additional
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four jump conditions (3.18) are given by[
n× (c2∆4hE

n
j − ε−1

0 D4ttP|nj )
]
I

= 0, j ∈ Γh, (3.19a)[
n · (ε0c2∆4hE

n
j )
]
I

= 0, j ∈ Γh, (3.19b)[
µ−1

0 n×∇4h ×Enj
]
I

= 0, j ∈ Γh, (3.19c)[
∇4h ·Enj

]
I

= 0, j ∈ Γh, (3.19d)[
n× (c4∆2

2hE
n
j − c2ε−1

0 D+tD−t∆2hP|nj − ε
−1
0 D2ttttP|nj )

]
I

= 0, j ∈ Γh, (3.19e)[
n · ε0(c4∆2

2hE
n
j − c2D+tD−t∆2hP|nj )

]
I

= 0, j ∈ Γh, (3.19f)[
µ−1

0 n× (c2∇2h ×∆2hE
n
j − ε−1

0 D+tD−t∇2h ×P|nj )
]
I

= 0, j ∈ Γh, (3.19g)[
∇2h · c2∆2hE

n
j − ε−1

0 D+tD−t∇2h ·P|nj
]
I

= 0, j ∈ Γh, (3.19h)

where the subscript 2h and 4h denote the second-order and fourth-order accurate discretizations
respectively. The magenta term D4ttP|nj requires fourth-order accurate approximation, while the
blue terms need only second-order accurate approximations.

Remark 3.1. In 3D, the interface conditions (3.19) at point j can be rewritten into the vector
form: [

(∇4h ·En
j )n + (I− nnT )µ−1

0 ∇4h ×En
j

]
I

= 0, (3.20a)[
nnT (ε0c

2∆4hE
n
j ) + (I− nnT )(c2∆4hE

n
j − ε−1

0 D4ttP|nj )
]
I

= 0, (3.20b)[
∇2h · (c2∆2hE

n
j − ε−1

0 D+tD−tP|nj )n + (I− nnT )µ−1
0 ∇2h × (c2∆2hE

n
j − ε−1

0 D+tD−tP|nj )
]
I

= 0, (3.20c)[
nnT ε0∆2h(c4∆2hE

n
j − c2D+tD−tP|nj )

+(I− nnT )(c4∆2
2hE

n
j − c2ε−1

0 D+tD−t∆2hP|nj − ε
−1
0 D2ttttP|nj )

]
I

= 0, (3.20d)

by combining the tangential and normal components, which allows convenient implementation of
the jump conditions. Here n is the unit normal vector at point j, and I is an identity matrix.

Note that, as written, the numerical interface conditions (3.19) have some un-desirable char-
acteristics. Firstly, there is no EP-decoupling, which means the colored terms D+tD−t∆2hP|nj ,
D+tD−t∇2h ×P|nj , D+tD−t∇2h ·P|nj , D2ttttP|nj and D4ttP|nj in (3.19) will remain unknown and
involve variable coefficients of the unknown ghost values (see details in [43]). Fortunately, the col-
ored terms only nonlinearly depend on En on the first ghost lines. To this end, we approximate the
red terms using second-order accurate predicted values on the first ghost lines that are obtained
using the second-order numerical interface conditions (3.15), which leads to the linear system:[

n× (c2∆4hE
n
j )
]
I

=
[
n× (ε−1

0 D4ttP|nj )
]
I
, j ∈ Γh, (3.19a*)

[n× (c4∆2
2hE

n
j )]I = [n× (c2ε−1

0 D+tD−t∆2hP|nj + ε−1
0 D2ttttP|nj )]I , j ∈ Γh, (3.19e*)

[n · (ε0c4∆2
2hE

n
j )]I = [n · (ε0c2D+tD−t∆2hP|nj )]I , j ∈ Γh, (3.19f*)[

µ−1
0 n× (c2∇2h ×∆2hE

n
j )
]
I

=
[
µ−1

0 n× (ε−1
0 D+tD−t∇2h ×P|nj )

]
I
, j ∈ Γh, (3.19g*)

[∇2h · c2∆2hE
n
j ]I = [ε−1

0 D+tD−t∇2h ·P|nj ]I , j ∈ Γh. (3.19h*)
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Thus, we obtain the EP-decoupling for the fourth-order accurate approximations of the interface
conditions similarly as the second-order case.

Secondly, due to cross-derivative terms such as ∂x∂yu in ∆2u, the discrete interface conditions
couple ghost points in the tangential directions; this would require solution of a system of equa-
tions along the entire interface. Moreover, as discussed in the previous work [4], cross terms in
∆2

2hE
n
j ,∇2h×∆2hE

n
j ,∇2h×∆2hE

n
j will invoke instability if the grid size in the tangential direction

is smaller than the grid size in the normal direction (the instability will be investigated and dedi-
cated to a separate paper). To avoid such instability, we follow [4] and approximate the cross terms
by decoupling En in the tangential direction, i.e., the second-order accurate predicted values on the
first ghost lines are also employed here to approximate the cross terms. As a result of tangential
decoupling that leads the stencil localization, the interface conditions (3.19) can be formulated
into an identical time-independent local small linear system at each point j independently rather
than a large global system.

To summarize, for the fourth-order accurate interface conditions (3.19), we linearize the jump
conditions via EP-decoupling and localize the stencils using tangential decoupling by em-
ploying second-order accurate predicted values of En on the first ghost lines, obtained using the
second-order approximations of interface conditions (3.15).

Remark 3.2. The interface treatment described in this subsection relies on the grid points match-
ing along the interface. This restriction may lead to one of the domains having a finer grid than
necessary to achieve a given level of accuracy. In general it should be possible to allow non-matching
grids across the interface but the details remain to be worked out. Note, however, that even though
the tangential grid points must match on interface grids, the grid spacings can transition to larger
values in the bulk grids so that any over-resolution (and additional cost) is localized near the inter-
faces.

4. Numerical results

This section presents results to verify the accuracy and stability of the new Maxwell-MLA
schemes and interface approximations. Section 4.1 studies the accuracy for manufactured solutions
for a two-domain problem with a planar interface between two nonlinear materials. Section 4.2
then studies the accuracy for manufactured solutions on a problem with a curved interface and
overset grids. Section 4.3 considers the propagation of a soliton for which there is an approximate
asymptotic solution. A grid self-convergence study is used to evaluate the convergence rate of the
computed soliton. A problem with multiple interfaces is studied in Section 4.4 and shows results for
an interface between a nonlinear medium and a linear dispersive medium. Finally in Section 4.5,
results are shown from the scattering of a Gaussian plane wave from an array of ellipsoids composed
from active materials.

As explained in [3] for the dispersive Maxwell equations, the time-step for the full Maxwell-MLA
equations will generally be a small perturbation to the time-step determined for isotropic Maxwell’s
equations as the mesh spacing and time-step go to zero. This is because the ordinary differential
equations governing the polarization vectors and population densities do not involve any spatial
derivatives; it is the spatial derivatives in the wave operator that are the primary determining
factor for the stable time-step. On a Cartesian grid the time-step for both the second-order and
fourth-order accurate schemes is chosen as

∆t =
Ccfl√

c2
∑d

i=1
1

∆x2i

, (4.1)
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where Ccfl is a safety factor and ∆xi is the grid spacing in the xi direction. The corresponding
formula for curvilinear grids is determined in the usual way by freezing coefficients and using a local
von Neumann analysis [44]. A CFL number Ccfl = 0.9 is used for all the numerical experiments
given below. We note, however, that in general, such as on a coarse grid for a material with very
large values of b1,m, b0,m, am,l, etc., or extreme nonlinearity, it may be necessary to reduce the
time-step from that given by (4.1). In this case, a more general linearization procedure can be used
to estimate the time-step but we leave these details for future work.

4.1. Planar interface results

To verify the accuracy of the interface implementations we perform a grid-refinement con-
vergence study for problems with a planar interface. The domain for the interface problem in
d-dimensions consists of two squares (cubes),

Ω = [−1, 0]× [0, 1]d−1 ∪ [0, 1]× [0, 1]d−1. (4.2)

Each square (cube) is covered by a Cartesian grid with grid spacing 1/(10j), j = 1, 2, . . .. Let G(j)
Id

denote the composite grid of resolution j for this domain.
Manufactured solutions are used to generate a known solution. The manufactured solution is

defined using trigonometric functions and takes the form

Um = am cos(fm,x x+ φm,x) cos(fm,y y + φm,y) cos(fm,z z + φm,z) cos(fm,t t), (4.3)

where Um denotes any component of the solution (e.g. a component of E, Pj orN`). The amplitudes
am, frequencies fm,x, fm,y and phases φm,x are chosen differently for different m. For convenience
the manufactured solution for E is chosen to be divergence free as this simplifies implementations
of the boundary conditions. The initial conditions and boundary conditions are set to the known
solution. The discrete solutions at the interface are obtained with the numerical interface conditions
as discussed in Section 3.3. The MLA materials in the left and right domains are chosen to be
mlaMat2 and mlaMat3 as defined in Appendix D in [43]. These materials have different numbers of
polarization vectors and population densities.

Figure 7 gives an example of the Cartesian meshes for 2D interface (left), approximated solution
Ey (middle) and the errors against the exact solution for Ey component (right) at t = 1 on
meshes with grid spacing h = 1/160. Figure 8 shows the convergence results with manufactured
solutions (4.3) for 2D (left) and 3D (right), with errors measured as the maximum norm in space.
The max-norm of a vector quantity is the maximum over all grid points of the maximum absolute
value of all components of the vector.

4.2. Curved interface results

In this section we verify the accuracy of the second-order and fourth-order accurate schemes
for curved interfaces. The computational domain [−1, 1] × [−1, 1], the circular interface of radius
rd = 0.5 and the overset grids are as shown in the left of Figure 9. We should note that the
matched grids are used across the circular interfaces as is the square/cube case in Section 4.1. For
the numerical results, manufactured solutions in the form of (4.3) are also employed, and their
approximations and errors are shown in the middle and right of Figure 9. Grid refinement study is
also performed in Figure 10. The MLA materials in the outer and inner domains are chosen to be
mlaMat2 and mlaMat3 as defined in Appendix D in [43].
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Ey at t = 1.0

-0.5 0.5

Ey error at t = 1.0

-4.6e-8 4.58e-8

Figure 7: Left: Grids for two rectangles; Middle: Solution Ey at t = 1.0; Right: Error of Ey at t = 1.0.

Figure 8: Convergence for planar interfaces with manufactured solutions at t = 1.0. Left: two dimensional results.
Right: three dimensional results.

Ey t = 1.0

-0.5 0.5

Ey-error t = 1.0

-9.5e-8 9.82e-8

−1

1

−1 1

rd

Figure 9: Left: A coarse grid representation of the composite grid G(2) for the MLA disk. Middle: computed solution
for Ey at t = 1 for a manufactured solution. Right: Errors in Ey.
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Figure 10: Left: estimated max-norm errors for the curved interface problem at t = 1.0 using a self-convergence grid
refinement study. Right: Self-convergence estimated errors for the soliton solution at t = 100.

4.3. Soliton

In this section, we present a soliton-like solution for the nonlinear system (2.1a)-(2.1c) in the
following form:

Ett − c2∆E = −ηPtt, (4.4a)

Ptt + P = δ̂2DE, (4.4b)

Dt = −EPt, (4.4c)

where D = N0−N1 denotes the difference of carrier population density in the 2 atomic levels. The
above system (4.4) can be cast into the Maxwell-MLA system (2.1) with 1 polarization and 1 level
with parameters given in Appendix D in [43].

Multi-scale analysis in space and time of the 2-level system (4.4a)–(4.4c) would give the following
asymptotic solutions

E(x, t) = 2

√
ηU

1− U
sech(δ̂(x− x0 − Ut)) sin(x− t), (4.5a)

P (x, t) = 2δ̂ tanh(δ̂(x− x0 − Ut)) sech(δ̂(x− x0 − Ut)) cos(x− t), (4.5b)

D(x, t) = 1− 2 sech2(δ̂(x− x0 − Ut)), (4.5c)

where x0 is a free parameter for the center of the soliton solution.
For the numerical simulations below, a thin rectangular domain [0, 1/2]× [0, 1000] is employed.

The boundary conditions on the left and right are set equal to the asymptotic solution (4.5),
although this has negligible effect on the results since the solution is extremely small at these
boundaries. Periodic boundary conditions are imposed in the y-direction. The initial conditions
at t = 0 are chosen to be E(x, 0), P (x, 0), D(x, 0), while Taylor’s expansions are employed to
obtain values of E,P,D at time t = −dt, where low-order derivatives such as Et(x, 0), and Pt(x, 0)
are assumed known from the soliton solutions and high-order derivatives are computed recursively
using the PDEs (4.4a)–(4.4c), with parameters x0 = 0, U = 1/2, η = 1, c = 1, and δ̂ = 0.1.

In the left figure of Figure 11, extracted line plots of the approximated soliton solutions at
t = 100 along y = 0 are presented, while the right figure illustrates the accuracy between second-
order accurate (O2) simulations with fourth-order accurate (O4) simulations (both on coarse meshes
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Figure 11: Left: line plot along y = 0 of the O4 soliton solutions (h = 1/4). Right: difference between O2/O4 with
a fine grid O4 solution Ey,ref (h = 1/16).

with h = 1/4) by comparing their differences with O4 simulations on a finer mesh with grid spacing
h = 1/16, which is denoted as Ey,ref in the legend. Figure 10 (right) compares the self-convergence
study for the second- and fourth-order accurate simulations.

4.4. Scattering from a layered disk

In this section, we provide an example of multiple types of material interfaces, i.e., inter-
faces between both linear/nonlinear and linear/linear materials. The computational domain is
[−1.75, 1.75]× [−1.5, 1.5] with a disk of radius r = 0.4 centered at origin and two layers of width 0.1
outside the disk. The background rectangle is assumed to be vacuum with normalized permittivity
ε = 1, while the center disk is made of nonlinear 4-level active material with 2 polarization vectors
with ε = 2 as depicted in Fig 3 (see Appendix D in [43] for the material parameters). The first layer
is of linear material modeled by generalized dispersive model (GDM) with 1 polarization vector
and ε = 4 as in [3, 4] and interface treatments of GDM materials can be found therein. The second
layer is assumed to be a linear isotropic material with ε = 3. The permeability in all materials are
set to µ = 1.

For the numerical simulations below, the initial conditions are from a modulated Gaussian plane
wave with nonzero Ey component, i.e.,

Ey = exp(−50(x+ 3− t)2) cos(4π(x+ 3− t)), (4.6)

with center x = −3. Nonlocal radiation boundary conditions6 are imposed on the left and right of
the domain while periodic boundary conditions are imposed on the top and bottom of the domain.
The overlapping grids (zoomed-in view) can be found in Figure 12.

In Figure 13, we show three snapshots of the norm of the electric fields as a result of interacting
with the nonlinear 4 level active material, which also demonstrates a focusing effect from the

6The non-local radiation boundary conditions are based on the work in [45].
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circular geometry. Figure 14 (left) gives the results of self-convergence study from both the second-
order and fourth-order accurate simulations at t = 3.8. Furthermore, a comparison of runtime
between order 2 (O2) and order 4 (O4) simulations with the same accuracy till final time t = 5 are
performed using the serial codes are shown in Figure 14 (right), where the purple digits indicate
the approximate wall-clock runtime speedup between O2 and O4. The projected O2 runtimes are
predicted using the fact that the computational cost on a 2×-refined mesh is 8× slower.

4.5. An array of active material ellipsoids

As a final example we consider the scattering of a Gaussian plane wave from a collection of 36
solid ellipsoid meta-atoms, each containing an active material. The overset grid for the geometry in
shown in Figure 15. The ellipsoids are enclosed in a rectangular box B = [xa, xb]× [ya, yb]× [za, zb].
The ellipsoids have different shapes and orientations. To avoid polar-type singularities in the grid
mappings, the surface of the ellipsoid is covered with three patches. The interior of each ellipsoid
contains an active material defined by the active material mlaMat4levels, given in Appendix D in
[43]. The ellipsoids are surrounded by a vacuum region. A Gaussian plane wave enters the domain
from the left at the face x = xa. Radiation boundary conditions are used the faces xa and xb while
the solution is periodic in y and z. A y-polarized Gaussian plane wave travels in the x-direction
and enters the domain through the left face at x = xa.

Figure 15 shows the contours of the computed solution on selected contour cutting planes. The
magnitude of the electric field ‖E‖ is shown along with the Py component of total polarization and
the population density N3. The incident wave is seen to excite the meta-atoms as it passes through.

5. Conclusions

A high-order accurate finite-difference time-domain scheme for solving Maxwell’s equations
coupled to multi-level carrier kinetics models was developed. The Maxwell-MLA method uses an
efficient single-step three-level modified-equation approach for solving the time-domain Maxwell’s
equations in the form of a second-order vector wave equation. Nonlinear effects for active materials
are treated with a fairly general class of multi-level atomic models involving ODEs for any number
of polarization vectors and population densities. Complex geometries with curved boundary and
interfaces are accurately treated using conforming and overset grids. One key property of the scheme
is that through a hierarchical modified equation (HIME) approach no nonlinear solves are required
to time-step the equations at high-order accuracy. Another key property is that through the use of a
hierarchical approach that couples low-order accurate and high-order accurate approximations, the
update of the ghost values at the interface are local with no nonlinear solves and no coupling with
adjacent ghost values. Stability on overset grids was maintained using a novel high-order upwind
scheme that applies to wave equations in second-order form. The initial-boundary value problem
for the Maxwell-MLA equations was shown to be well posed. An L2-energy estimate was derived
for a restricted class of commonly used MLA models which showed long-time existence. Numerical
results in two and three dimensions were presented that verified the accuracy and stability of the
new Maxwell-MLA schemes. Results were shown for problems with interfaces between two active
materials and also for active materials adjacent to linear dispersive materials. Verification was
performed using manufactured solutions and an asymptotic soliton solution. For problems without
exact solutions, a self-convergence grid refinement procedure was used to estimate the errors and
convergence rates. Some possible future steps include extending the current numerical schemes to
handle junctions of three or materials, adding support for adaptive mesh refinement, and adding
support for a changing time-step.
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Figure 15: Gaussian plane wave hitting thirty-six solid-ellipsoid meta-atoms. Each ellipsoid contains a four-level
MLA active material. Left: overset grid showing the grids on the ellipsoid surfaces. Right and bottom: contours of
the electric field-norm ‖E‖, the y-component of the total polarization Py, and the level-three population density, N3,
are shown.
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Appendix A. Maxwell-MLA algorithms

Pseudo-code algorithms for the second-order accurate and fourth-order accurate Maxwell-MLA
time-stepping schemes are given in this section.

Appendix A.1. Second-order accurate Maxwell-MLA algorithm

Algorithm 2 Second-order accurate Maxwell-MLA algorithm
1: Initialize;
2: while t < Tfinal do . Begin time-stepping loop
3: for i = 1, . . . , nDomains do . Loop over each subdomain
4: for m = 1, . . . ,Np do

5: Pn+1
m,j = 1

1+b1,m
∆t
2

(
2Pn

m,j −Pn−1
m,j + b1,m

∆t
2 Pn−1

m,j −∆t2b0,mPn
m,j + ∆t2am,`N

n
` E

n
j

)
;

6: D0tP
n
m,j = (Pn+1

m,j −Pn−1
m,j )/(2∆t);

7: D+tD−tP
n
m,j = (Pn+1

m,j − 2Pn+1
m,j + Pn−1

m,j )/∆t2;
8: end for
9: D+tD−tE

n
j = (En+1

j − 2En
j + En−1

j )/∆t2;

10: En+1
j = 2En

j −En−1
j + ∆t2c2∆2hE

n
j − ε

−1
0

∑Np

m=1

(
Pn+1

m,j − 2Pn
m,j + Pn−1

m,j

)
11: for ` = 0, . . . ,N` − 1 do
12: D2tN`|nj = α`,kN

n
k,j + β`,mEn

j ·D0tP
n
m,j;

13: D2ttN
n
` |

n
j = α`,k D2tNk|nj + β`,mD0tE

n
j ·D0tP

n
m,j + β`,mEn

j ·D+tD−tP
n
m,j;

14: Nn+1
`,j = Nn

`,j + ∆t D2tN`|nj + ∆t2

2 D2ttN`|nj ;
15: end for
16: end for
17: Apply boundary and interface conditions;
18: t = t+ ∆t, n = n+ 1;
19: end while . End time-stepping loop

Appendix A.2. Fourth-order accurate Maxwell-MLA algorithm
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Algorithm 3 Algorithm for fourth-order accurate approximations
1: Initialize;
2: while t < Tfinal do . Begin time-stepping loop
3: for i = 1, . . . , nDomains do . Loop over each subdomain
4: for m = 1, . . . ,Np do

5: Pn+1,∗
m,j = 1

1+b1,m
∆t
2

(
2Pn

m,j −Pn−1
m,j + b1,m

∆t
2 Pn−1

m,j −∆t2b0,mPn
m,j + ∆t2am,`N

n
` E

n
j

)
;

6: end for
7: En+1,∗

j = 2En
j −En−1

j + ∆t2c2∆2hE
n
j − ε

−1
0

∑Np

m=1

(
Pn+1,∗

m,j − 2Pn
m,j + Pn−1

m,j

)
8: for ` = 0, . . . ,N` − 1 do
9: D2tN

∗
` |

n
j = α`,kN

n
k,j + β`,mEn

j ·D0tP
n,∗
m,j;

10: D2ttN
∗
` |

n
j = α`,kD2tN

∗
k |

n
j + β`,mD0tE

n
j ·D0tP

n,∗
m,j + β`,mEn

j ·D+tD−tP
n,∗
m,j;

11: end for
12: for m = 1, . . . ,Np do
13: D2tttP

∗
m|

n
j = −b1,mD+tD−tP

n,∗
m,j − b0,mD0tP

n,∗
m,j + am,`D2tN

∗
` |

n
j E

n
j + ak,`N

n
`,jD0tE

n,∗
j ;

14: D2ttttP
∗
m|

n
j = −b1,mD2tttP

∗
m|

n
j − b0,mD+tD−tP

n,∗
m,j + am,`D2ttN

∗
` |

n
j E

n
j

15: +2am,`D2tN
∗
` |

n
j D0tE

n,∗
j + am,`N

n
`,jD+tD−tE

n,∗
j ;

16: Pn+1
m,j = 1

1+b1,m
∆t
2

(
2Pn

m,j −Pn−1
m,j + ∆t4

12 D2ttttP
∗
m|

n
j + ∆t

2 b1,mPn−1
m,j

17: +∆t4

6 b1,mD2tttP
∗
m|

n
j −∆t2b0,mPn

m,j + ∆t2am,`N
n
`,jE

n
j

)
;

18: D+tD−t∆2hP
n
m,j = (∆2hP

n+1
m,j − 2∆2hP

n
m,j + ∆2hP

n−1
m,j )/∆t2;

19: D4tPm|nj = D0tP
n
m,j − ∆t2

6 D2tttP
∗
m|

n
j ;

20: D4ttPm|nj = −b1,m D4tPm|nj − b0,mPn
m,j + am,`N

n
`,jE

n
j ;

21: end for
22: En+1

j = 2En
j −En−1

j + ∆t4

12

(
c4∆2

2hE
n
j −

∑Np

m=1 ε
−1
0 c2D+tD−t∆2hP

n
m,j

)
23: +∆t2c2∆4hE

n
j − ε

−1
0

∑Np

m=1

(
Pn+1

m,j − 2Pn
m,j + Pn−1

m,j

)
;

24: D2tttE|nj = 1
2∆t

[
c2∆2hE

n+1
j − c2∆2hE

n−1
j

]
− ε−1

0

∑Np

m=1 D2tttP|n+1
m,j ;

25: D4tE|nj = D0tE
n
j − ∆t2

6 D2tttE|nj ;
26: for ` = 0, . . . ,N` − 1 do
27: D4tN`|nj = α`,kN

n
k + β`,mEn

j · D4tPm|nj ;

28: D4ttN`|nj = α`,k D4tN`|nj + β`,m D4tE|nj · D4tPm|nj + β`,mEn · D4ttPm|nj ;
29: end for
30: for m = 1, . . . ,Np do
31: D2tttPm|nj = −b1,mD4ttP

n
m,j − b0,mD4tP

n
m,j + am,` D4tN`|nj En

j + am,`N
n
`,jD4tE

n
j ;

32: D2ttttPm|nj = −b1,mD2tttPm|nj − b0,mD4ttP
n
m,j + am,` D4ttN`|nj En

j

33: +2am,` D4tN`|nj D4tE
n
j + am,`N

n
`,jD+tD−tE

n
j ;

34: end for
35: for ` = 0, . . . ,N` − 1 do
36: D2tttN`|nj = α`,k D4ttNk|nj + β`,mD+tD−tE

n
j · D4tPm|nj + 2β`,m D4tE|nj · D4ttPm|nj

37: +β`,mEn
j · D2tttPm|nj ;

38: D2ttttN`|nj = α`,kD2tttNk|nj + β`,mD2tttE|nj · D4tPm|nj
39: +3β`,mD+tD−tE

n
j · D4ttPm|nj + 3β`,m D4tE|nj · D2tttPm|nj + β`,mEn

j · D2ttttPm|nj ;

40: Nn+1
`,j = Nn

`,j + ∆t D4tN`|nj + ∆t2

2 D4ttN`|nj + ∆t3

6 D2tttN`|nj + ∆t4

24 D2ttttN`|nj ;
41: end for
42: end for
43: Apply boundary and interface conditions;
44: t = t+ ∆t, n = n+ 1;
45: end while . End time-stepping loop
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Appendix B. Well-posedness and long time stability of a restricted Maxwell-MLA
system

In this section we consider the well-posedness and long-time stability of the Maxwell-MLA
equations (2.1). If lower-order terms are dropped from the equations (2.1), Maxwell’s equations
for E decouples from the polarization equations (2.1b) and rate equations (2.1c). These equations
are thus well posed with the appropriate initial conditions and boundary conditions. The solution
to the IBVP will exist for at least short times. To study the long-time existence of the nonlinear
equations we restrict ourselves to a class of Maxwell-MLA equations that are of common interest,
see Figure B.16. To simplify the discussion we consider the equations written using the first-order
form for E and H

ε0Et = ∇×H−Pt, (B.1a)

µ0Ht = −∇×E, (B.1b)

with an MLA system of Nn energy levels, each with population density N`, ` = 0, 1, . . . ,Nn − 1
(see Figure 3 for an example of a 4-level system). Polarization states Pji, with i and j integers in
the range 0 and Nn− 1 and i < j, may exist between any two levels with governing equation given
by

∂2
tPji + γji∂tPji + ω2

jiPji = κji(Ni −Nj)E, ji ∈ T , (B.2)

where ji belongs to the set of active transitions pairs, T . For example, in the four-level system
in Figure 3, T = {30, 21}. The parameters in (B.2) are assumed to satisfy γji ≥ 0, ωji > 0 and
κji > 0.
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Figure B.16: Jablonski diagram for a common class of MLA systems showing the energy levels, population densities
Ni and selected transitions. Polarization states Pji can exist between any two atomic levels with i < j. The αji are
relaxation time-constants for relaxation from state j to state i. The rate of change of state N4 depends on the source
term 1

~ω4,1
E · ∂tP4,1 while the rate of change of state N1 depends on the same source term with opposite sign. The

source term κ60(N0 −N6)E for the P60 ODE is proportional to E and the difference N0 −N6.
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The population density N` satisfies

∂tN` =

Nn−1∑
k=0

α`kNk +
∑
ji∈T

σji
1

~ωji
E · ∂tPji, (B.3)

σij =


+1, if ` = j,

−1, if ` = i,

0, otherwise.

(B.4)

Our goal is to derive an L2-energy estimate to show that the solution remains bounded in time.
Let (f, g) denote the L2-inner product over Ω,

(f, g) =

∫
Ω
f(x) g(x) dx, (B.5)

for scalar functions f and g (all functions are assume to be real valued). Let ‖ · ‖ denote the
corresponding norm. For vector functions we use

(f ,g) =

∫
Ω
f(x) · g(x) dx. (B.6)

In the usual way we take inner products of the various equations with the corresponding variable
or its time-derivative,

(E, ε0Et) = (E,∇×H− ∂tP), (B.7)

(H, µ0Ht) = (H,−∇×E), (B.8)

(∂tPji, ∂
2
tPji + γji∂tPji + ω2

jiPji) = (∂tPji, κji(Ni −Nj)E), ij ∈ T , (B.9)

(N`, ∂tN`) =

Nn−1∑
k=0

(N`, α`kNk) +
∑
ij∈T

(N`, σji
1

~ωji
E · ∂tPji), ` = 0, 1, 2, . . . ,Nn − 1. (B.10)

Integrating by parts the right hand sides of (B.7) and (B.8) and then adding these equations gives

an equation for the time-derivative of isotropic energy E0
def
= ε0

2 ‖E‖
2 + µ0

2 ‖H‖
2,

∂t

(ε0
2
‖E‖2 +

µ0

2
‖H‖2

)
= −(E, ∂tP) +BT.s, (B.11)

where BT.s denotes the usual boundary terms for isotropic Maxwell’s equations. We assume the
boundary conditions are chosen to make the boundary terms to vanish or be negative. Let us now
focus on equations (B.9) and (B.10) which can be written as

1

2
∂t‖∂tPji‖2 + γji‖∂tPji‖2 +

1

2
ω2
ji ∂t‖Pji‖2 = (∂tPji, κji(Ni −Nj)E), (B.12)

1

2
∂t‖N`‖2 =

Nn−1∑
k=0

(N`, α`kNk) +
∑
ji∈T

(N`, σji
1

~ωji
E · ∂tPji). (B.13)

Define the quantities K and δji by

K def
=
∑
ij∈T

κji~ωji, (B.14)

δji
def
=

K
κji~ωji

. (B.15)
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Scaling equation (B.12) by δji and equation (B.13) by K leads to

δji

{
1

2
∂t‖∂tPji‖2 + γji‖∂tPji‖2 +

1

2
ω2
ji ∂t‖Pji‖2

}
= (Ni −Nj ,

K
~ωji

E · ∂tPji), (B.16)

K1

2
∂t‖N`‖2 = K

Nn−1∑
k=0

(N`, α`kNk) +
∑
ji∈T

(σjiN`,
K

~ωji
E · ∂tPji). (B.17)

Adding (B.17) to the sum over ji ∈ T of (B.16) eliminates the inner products containing the
nonlinear terms E · ∂tPji to give

∑
ji∈T

δji

{
1

2
∂t‖∂tPji‖2 + γji‖∂tPji‖2 +

1

2
ω2
ji ∂t‖Pji‖2

}
+K

Nn−1∑
i=0

1

2
∂t‖N`‖2, (B.18)

= K
Nn−1∑
i=0

Nn−1∑
k=0

(N`, α`kNk).

Let EPN be defined from the terms on the left of (B.18)

EPN
def
=
∑
ji∈T

δji

{
1

2
‖∂tPji‖2 +

1

2
ω2
ji ‖Pji‖2

}
+K1

2
‖N‖2, (B.19)

where

‖N‖2 def
=

Nn−1∑
`=0

‖N`‖2. (B.20)

Note that

‖∂tP‖2 =
∑
ji∈T
‖∂tPji‖2 ≤ KpEPN , (B.21)

Kp
def
= min

ji∈T

1

δji
. (B.22)

Equation (B.18) becomes

∂tEPN = −
∑
ji∈T

δjiγji‖∂tPji‖2 +K
Nn−1∑
`=0

Nn−1∑
k=0

(N`, α`kNk). (B.23)

Using |NiNj | ≤ 1
2N

2
i + 1

2N
2
j implies

K
∣∣∣∑

`

∑
k

(N`, α`kNk)
∣∣∣ ≤ CαK 1

2
‖N‖2 ≤ CαEPN , (B.24)

for some constant Cα which depends on αmax = maxji |αji|, Nn and Np. Using (B.24) in (B.23)
implies

∂tEPN ≤ CαEPN . (B.25)
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Integrating this last expression in time implies EPN is bounded in time,

EPN (t) ≤ EPN (0)eCαt, (B.26)

which also, from the definition (B.19) for EPN and (B.21) implies a bound on ‖∂tP‖2 and ‖N‖2

‖∂tP‖2 ≤ Kp EPN (0)eCαt, (B.27)

K
2
‖N‖2 ≤ EPN (0)eCαt. (B.28)

We are now prepared to form the final energy estimate. Adding equations (B.11) and (B.23)

gives an equation for the total energy E def
= E0 + EPN

∂tE = −(E, ∂tP)−
∑
ji∈T

δji γji‖∂tPji‖2 +K
Nn−1∑
i=0

Nn−1∑
k=0

(Ni, αikNk) +BT.s, (B.29)

Using ∣∣(E, ∂tP)
∣∣ ≤ ε0

2
‖E‖2 +

1

2ε0
‖∂tP‖2, (B.30)

implies

∂tE ≤
ε0
2
‖E‖2 +

1

2ε0
‖∂tP‖2 + C‖N‖2 +BT.s, (B.31)

≤ E + C2 EPN (0)eCαt, (B.32)

for some constant C2, where we have assumed the boundary terms are non-positive. To get a bound
for E we integrate the inequality (B.32) to give

E(t) ≤ etE(0) + C2 e
t

∫ t

0
e(Cα−1)τ EPN (0) dτ, (B.33)

= etE(0) +
C2

1− Cα

(
et − eCαt

)
EPN (0). (B.34)

where the case Cα = 1 can be found with the appropriate limit.

We have therefore proved the following theorem.

Theorem 1. Given appropriate boundary conditions, the following L2-“energy” of the Maxwell-
MLA system (B.1),(B.2),(B.3)

E =
ε0
2
‖E‖2 +

µ0

2
‖H‖2 +

∑
ji∈T

δji

{
1

2
‖∂tPji‖2 +

1

2
ω2
ji ‖Pji‖2

}
+
K
2
‖N‖2, (B.35)

has bounded exponential growth in time,

E(t) ≤ K1e
K2t, (B.36)

for some constants K1 and K2.
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Appendix C. Supplemental Equations for Fourth-Order

The following expressions are used in Section 3.2.2 in the description of the fourth-order accurate
scheme.

D2tttP
∗
m|
n
j

def
= −b1,mD+tD−tP

n,∗
m,j − b0,mD0tP

n,∗
m,j

+
∑
`

am,`D2tN
∗
` |
n
j E

n
j +

∑
`

ak,`N
n
`,jD0tE

n,∗
j (C.1a)

D2ttttP
∗
m|
n
j

def
= −b1,mD2tttP

∗
m|
n
j − b0,mD+tD−tP

n,∗
m,j +

∑
`

am,`D2ttN
∗
` |
n
j E

n
j

+ 2
∑
`

am,`D2tN
∗
` |
n
jD0tE

n,∗
j +

∑
`

am,`N
n
`,jD+tD−tE

n,∗
j (C.1b)

D4tN`|nj
def
=
∑

ˆ̀

α`,ˆ̀N
n
ˆ̀ + β`,mE

n
j · D4tPm|nj (C.1c)

D4ttN`|nj
def
=
∑

ˆ̀

α`,ˆ̀D4tN`|nj + β`,m D4tE|nj · D4tPm|nj + β`,mE
n · D4ttPm|nj (C.1d)

D2tttN`|nj
def
=
∑

ˆ̀

α`,ˆ̀D4ttNˆ̀

∣∣n
j

+ β`,mD+tD−tE
n
j · D4tPm|nj

+ 2β`,m D4tE|nj · D4ttPm|nj + β`,mE
n
j · D2tttPm|nj (C.1e)

D2ttttN`|nj
def
=
∑

ˆ̀

α`,ˆ̀D2tttNˆ̀

∣∣n
j

+ β`,mD2tttE|nj · D4tPm|nj + 3β`,mD+tD−tE
n
j · D4ttPm|nj

+ 3β`,m D4tE|nj · D2tttPm|nj + β`,mE
n
j · D2ttttPm|nj (C.1f)
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