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Abstract

We consider the numerical solution of Poisson’s equation on struc-
tured grids using geometric multigrid with nonstandard coarse grids and
coarse-level operators. We are motivated by the problem of developing
high-order accurate numerical solvers for elliptic boundary value prob-
lems on complex geometry using overset grids. For flexibility in grid
generation, we would like to consider lower-order accurate coarse-level
approximations, and coarsening factors other than two. We show that
second-order accurate coarse-level approximations are very effective for
fourth- or sixth-order accurate fine-level finite difference discretizations.
We study the use of different Galerkin and non-Galerkin coarse-level
operators. Using local Fourier analysis (LFA) we choose the smooth-
ing parameter ω and the coarse-level operators to optimize the overall
multigrid convergence rate. We show that the results based on LFA
for periodic problems also hold for more general boundary conditions
provided these are discretized using compatibility conditions. Numerical
results for Poisson’s equation on a sample overset grid show that our
multigrid solver is many times faster, and uses less memory, than selected
Krylov solvers and an algebraic multigrid solver. We also study grid
coarsening by a general factor and show that good convergence rates are
retained for a range of coarsening factors near two. We ask the question
of which coarsening factor leads to the most efficient multigrid algorithm.

Keywords: multigrid, nonstandard coarsening, overset grids, high-order
accuracy
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1 Introduction

We are motivated by the solution of elliptic partial differential equations
(PDEs) and boundary value problems (BVPs) on complex geometry using
composite overlapping grids. As shown in Figure 1, a composite or “overset”
grid consists of multiple overlapping component grids used to cover a complex
geometry [1]. Each component grid is a logically-rectangular structured grid,
defined by a mapping from the unit-square or unit-cube to the physical space.
Solution values are interpolated at internal interpolation boundaries where two
component grids overlap. These grids have been shown to be very effective at
efficiently solving a wide class of problems including low speed flows [2], high-
speed flows [3], fluid structure interactions [4] and electromagnetics [5].The
approach is especially useful for problems with moving geometry. Multigrid
methods are well-known to provide excellent iterative solvers for elliptic prob-
lems, and have been shown to be quite effective for solving problems on overset
grids [1, 6], being fast and efficient and having low startup costs as grids change
in a moving geometry scenario.

Fine grid l = 0 Coarse level l = 1 Coarse level l = 2

Figure 1 Overset grid for a centrifugal pump, fine grid and two multigrid coarsenings. As
the mesh is refined further the majority of grid points will belong to the blue Cartesian
background grid. Ideally, multigrid convergence rates for this overset grid should approach
the convergence rates and efficiency of a single Cartesian grid.

We are particularly interested in high-order accurate schemes on overset
grids, and we wish to develop high-order accurate elliptic solvers that are nearly
as efficient as second-order accurate ones. A fourth-order accurate scheme,
for example, although somewhat more expensive due to a larger stencil, will
generally be much more efficient than a second-order scheme in obtaining
a solution to a given accuracy. On the other hand, it is possible to obtain
multigrid convergence rates for a fourth-order accurate scheme that are very
similar to those for a second-order accurate one [7].

In practical problems, the generation of high-quality grids is one of the
most important steps in solving a boundary value problem using multigrid. It
is easy to construct a single Cartesian grid that can be coarsened many times
by a factor of two with standard coarsening. For flexibility in overset grid
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generation, however, we do not want to place such constraints on the number
of grid points in each individual component grid. Thus we would like to study
whether using more general coarsening factors, for example in a neighborhood
of two, will still retain good convergence rates and efficiency. Furthermore, a
primary technical challenge in applying multigrid methods to overset grids is
the automatic generation of coarser levels [6]. This is more prominent for high-
order accurate discretizations, which require multiple layers of interpolation
points to support wide stencils and sufficient overlap between component grids.
We would like to relax these grid generation requirements on coarse levels by
using lower-order accurate approximations, so that more valid coarse levels can
be generated.

Our overall goal is to achieve fast multigrid convergence when solving ellip-
tic boundary value problems on overset grids. We approach this goal by first
studying a model problem, and optimize the multigrid convergence using local
Fourier analysis (LFA). The results of this model problem analysis, such as
optimal smoothing parameters and choice of coarse-level operators, are then
applied to the more general problem on overset grids. One of the important
aspects of the multigrid algorithm in service of achieving fast convergence sim-
ilar to LFA, is the discretization of boundary conditions. For general boundary
value problems it is well-known that multigrid convergence rates can be sig-
nificantly impacted by the treatment of the boundary conditions, especially
for higher-order accurate schemes [8]. We show that the results based on LFA
also hold for more general boundary conditions provided these are discretized
using compatibility boundary conditions.

In this paper, we focus on the solution of the model problem of Poisson’s
equation on Cartesian grids, where we can make use of local Fourier analy-
sis to study properties of our multigrid algorithms. The solution to Poisson’s
equation is important in many applications such as incompressible fluids, in-
compressible elasticity, and electromagnetics. A typical, efficient overset grid
would often have the majority of its grid points in Cartesian background grids.
A well-designed multigrid algorithm for overset grids might be expected to
have convergence rates similar to those on a single Cartesian grid, and thus
fast algorithms for Cartesian grids are highly desired. We present some sam-
ple results for an overset grid to illustrate the applicability of the LFA results
to the more general boundary value problem. Further model problem LFA
study of anisotropic Poisson’s equation, and more detailed results for overset
grids, in particular for grids with stretching where line or plane smoothers are
utilized, are left for future work.

Three primary topics are considered in this paper. First, we investigate the
use of nonstandard coarse-level operators for high-order accurate schemes. We
show that second-order accurate coarse-level approximations are very effective
when fourth- and sixth-order accurate discretizations are used on the fine level.
We study the use of different Galerkin and non-Galerkin coarse-level operators,
and assess their influence on the multigrid convergence rate as well as their
computational cost, by studying the effective convergence rate. Based on these
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results we also propose more flexible and simpler Galerkin-like operators for
coarse levels. We study the use of an over-relaxed red-black smoother with a
relaxation parameter ω, which is commonly used and highly effective for the
model problem. Using local Fourier analysis we choose the value ω as well
as the coarse-level operators to optimize the overall multigrid convergence
rate, rather than the more common approach of choosing ω to optimize the
smoothing rate in isolation.

Second, we show that a good way to discretize boundary conditions is to
use compatibility boundary conditions (CBCs). For a model boundary value
problem we show how the use of CBCs leads to discrete eigenfunctions that
mimic the continuous ones, which means local Fourier analysis still approx-
imately applies. In contrast, the use of more traditional, standard one-sided
approximations leads to a degradation of the multigrid convergence rate. In
addition, we show that using CBCs, the LFA results and optimizations, in
particular the use of lower-order coarse-level operators, can be generalized to
a sample overset grid on general geometry, achieving multigrid convergence
rates comparable to LFA. Our multigrid solver is shown to outperform some
other iterative solvers, including a standard algebraic multigrid (AMG) solver,
on the sample overset grid, both in CPU time and memory usage.

Lastly, we study grid coarsening by general factors other than two, moti-
vated by the need of flexible grid generation for multi-level overset grids. It is
desired that good effective convergence rates can be obtained when coarsening
by a general factor r over a fairly large range about two. In particular, we ask
the question of which coarsening factor leads to the most efficient multigrid
algorithm. Local Fourier analysis is used to study the properties of factor-r
coarsening.

Multigrid is a well established field with a vast literature, see for example
the textbooks [8–12] and the references therein. There has been much active
research in algebraic multigrid methods [13–17]. Multigrid for overset grids
has been considered in [18–21]. The use of over-relaxed red-black smoothers,
in particular choosing the parameter ω to optimize the smoothing factor, has
been studied in [22]. Multigrid convergence rates derived from local Fourier
analysis are shown to match exactly those for a model boundary value problem
in [23]. The development of multigrid algorithms for high-order accurate dis-
cretizations is often accomplished by adding correction terms to a second-order
accurate scheme, for instance, via defect-correction [24] or τ -extrapolation [25].
We also note that the order of accuracy of the transfer operators has been
studied in [26], in terms of how it affects multigrid convergence.

The remainder of this paper is structured as follows. We first specify the
model problem and give a brief overview of multigrid and local Fourier analysis
in Section 2. In Section 3, we consider the use of lower-order accurate coarse-
level operators for higher-order accurate fine-level discretizations. In Section 4,
for a model problem, we compare the use of CBCs to one-sided approximations
of boundary conditions and their effect on multigrid convergence. Multigrid
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convergence results are shown for a sample overset grid, and a performance
comparison is made to an AMG solver and two Krylov solvers. Coarsening by
factors other than two is studied in Section 5. Finally, Section 6 summarizes
and concludes the paper.

2 Problem specification and multigrid overview

In general, we are interested in solving an elliptic boundary value problem
on some domain in d = 1, 2, 3 space dimensions with a finite-difference
discretization. It is known that the main properties of a well-designed multigrid
algorithm should not depend strongly on the particular domain or boundary
conditions. Therefore, in the analysis of this paper we mainly consider the
discretized domain to be the infinite Cartesian grid

Gh =
{

x = jh : j ∈ Zd
}

(1)

with spacing h. We focus on the important model problem of Poisson’s equation
in two dimensions

Lu = f, L = −∆ = −(∂2
x + ∂2

y), (2)

and its discretization
Lhuh = fh. (3a)

In particular, on (1) (d = 2) we consider the standard finite-difference dis-
cretization of the negative Laplacian L to second- or fourth-order accuracy
(using stencil notation [8])

L
(2)
h =

1

h2

 −1
−1 4 −1
−1


h

, L
(4)
h =

1

12h2


1
−16

1 −16 60 −16 1
−16

1


h

. (3b)

Consider a multi-level algorithm for solving a general discretized boundary
value problem represented as Lhuh = fh. A geometric multigrid algorithm to
solve this problem is often based on four key components:

i) a sequence of grids (levels) of increasing coarseness;
ii) an iterative procedure called a smoother, that is effective at reducing

high-frequency components of the error or residual (for example, common
smoothers are based on the Jacobi or Gauss-Seidel iteration);

iii) fine-to-coarse (restriction) and coarse-to-fine (interpolation) operators,
that transfer a solution between a fine grid and a coarse grid;

iv) coarse-level operators that approximate the fine-level operator Lh.
We consider the defect-correction multigrid algorithm, where the error
equation is solved recursively on the coarser level. Each iteration of a multigrid
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solver consists of a multi-level cycle. In particular, consider an (lmax + 1)-level
cycle with grids of spacing hl (h0 = h), l = 0, 1, · · · , lmax, on each level.
The smoothing operator on the l-th level is denoted as Shl (line 3), and re-
striction and interpolation operators between the l-th and (l+ 1)-st levels are

denoted as I
hl+1

hl
(line 5) and Ihlhl+1

(line 11), respectively. The coarse-level er-
ror equations are not to be solved until convergence, but only approximately
by a few iterations, defined by a cycle parameter γ (line 9). In particular, the
multigrid cycle is called a V[ν1, ν2] cycle if γ = 1, and a W[ν1, ν2] cycle if
γ = 2, where the parameters ν1 and ν2 indicate the number of pre- and post-
smoothing sweeps per cycle. The multigrid solver with multi-level cycles is
presented in pseudo-code in Algorithm 1.

Algorithm 1 (l + 1)-level cycles for Lhuh = fh

1: function uhl = MG(fhl , Lhl ; u
(0)
hl
, l, Niter)

2: for n = 0, 1, · · · , Niter − 1 do
. Peform Niter iterations (until convergence)

3: ū
(n)
hl

S
ν1
hl←−− u

(n)
hl

. Pre-smoothing

4: d̄
(n)
hl

= fhl − Lhl ū
(n)
hl

5: d̄
(n)
hl+1

= I
hl+1

hl
d̄

(n)
hl

. Restriction

6: if l + 1 = lmax then
7: v̄

(n)
hl+1

= L−1
hl+1

d̄
(n)
hl+1

. Exact solve, coarsest level
8: else
9: v̄

(n)
hl+1

= MG(d̄
(n)
hl+1

, Lhl+1
; 0, l + 1, γ) . Coarse-level solve

10: end if

11: ṽ
(n)
hl

= Ihlhl+1
v̄

(n)
hl+1

. Interpolation

12: ū
(n+1)
hl

= ū
(n)
hl

+ ṽ
(n)
hl

13: u
(n+1)
hl

S
ν2
hl←−− ū

(n+1)
hl

. Post-smoothing
14: end for

15: uhl = u
(n+1)
hl

16: end function

Given a current solution u
(n)
h (indexed by an iteration number n), as an

approximation of the solution uh to Lhuh = fh, we will consider the action of
each component in a multigrid cycle on the error and the residual

v
(n)
h

def
= uh − u(n)

h , d
(n)
h

def
= fh − Lhu(n)

h . (4)

For example, the smoother’s effect on the current error is depicted by the
smoothing operator Sh. In particular, with ν1 pre-smoothing sweeps (on the

fine level) in a multigrid cycle, the error reduction, from v
(n)
h to v̄

(n)
h ≡ uh−ū(n)

h ,
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is given by v̄
(n)
h = Sν1h v

(n)
h ; while ν2 post-smoothing sweeps give the error

reduction v
(n+1)
h = Sν2h v̄

(n+1)
h , from v̄

(n+1)
h ≡ uh − ū(n+1)

h to v
(n+1)
h ≡ uh −

u
(n+1)
h . Most importantly, the iteration operator of a multigrid cycle, denoted

by Mh, relates the error between successive iterations as

v
(n+1)
h = Mh v

(n)
h . (5)

Thus the asymptotic convergence rate (ACR) of the multigrid cycle

ACR
def
= lim

n→∞

‖v(n+1)
h ‖h
‖v(n)
h ‖h

(6)

is given by the spectral radius of the multigrid iteration operator Mh, denoted
as ρ,

ACR = ρ
def
= σ(Mh). (7)

In this paper, we denote σ(·) as the spectral radius of an operator on a grid-
function space, or a square matrix.

Local Fourier analysis (LFA) is a useful tool for analyzing multigrid al-
gorithms, in particular their convergence properties [8]. When the boundary
conditions are properly dealt with numerically, the most important properties
of a multigrid cycle are “local”, in that its convergence is not affected much
by the boundaries, as if on an infinite domain (see Section 4). This is why the
infinite grid (1) is introduced; the discrete Fourier modes

φh(x, θ)
def
= eiθ·

x
h , x ∈ Gh, θ ∈ Θ

def
= [−π, π)d, (8)

are thus eigenfunctions for any linear constant-coefficient operator that maps
a grid function on Gh to another. Here θ is a parameter representing the
frequency. Based on the orthogonal Fourier decomposition of any grid function,
we can analyze the behavior of the operators involved in a multigrid cycle
(such as Sh) by analyzing their operation on each Fourier mode.

Since a multi-level cycle aims to have a convergence rate comparable to
that of a two-level cycle, much of the analysis focuses on two levels. Given the
operator Lh on the fine grid Gh, consider a coarse grid GH , with grid-spacing
H, and a coarse-level operator denoted as LH . For example, by standard coars-

ening, GH =
{

x = jH : j ∈ Zd
}
, with H = 2h. The coarse-level operator LH

is said to have the Galerkin property if LH = IHh LhI
h
H , assuming the trans-

fer operators are adjoint to each other, IhH = (IHh )∗. Suppose the coarse-level
solve is exact, then the iteration operator for a [ν1, ν2] cycle is given by

Mh ≡MH
h = Sν2h K

H
h S

ν1
h , (9)
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where KH
h is the coarse-level correction operator

KH
h = Ih − IhHL−1

H IHh Lh, (10)

with the restriction operator IHh and interpolation operator IhH . In a general
multi-level cycle with grid-spacings (h0, h1, · · · , hlmax

) (h0 = h, lmax > 1),
the coarse-level correction operator on the finest level is given by

Kh = Ih − Ihh1
L̃−1
h1
Ih1

h Lh, (11)

where the coarse level solve L̃−1
h1

is in turn obtained recursively by an lmax-level
cycle. The multi-level iteration operator is then given by

Mh = Sν2h Kh S
ν1
h . (12)

Through local Fourier analysis, we can represent the multigrid operators
Sh, Kh, and in turn Mh, in Fourier space. In particular, these operators are
represented as small matrices, since their eigenspaces are constructed from a
basis of only a few Fourier modes. Given the matrix representation M̂h(θ) of
the multigrid iteration operator Mh in Fourier space, we can thus find the
asymptotic convergence rate ACR = ρ (7), by

ρ = σ(Mh) = sup
θ∈Θ

σ(M̂h(θ)), (13)

where the spectral radius σ(M̂h(θ)) of the matrix M̂h(θ) is given by its largest
eigenvalue in magnitude. In practice we compute the LFA spectral proper-
ties approximately using the software from Wienands [27]1. In particular, the
spectral radius (13) is approximated by

σ(Mh) ≈ max
θ∈Θh

σ(M̂h(θ)) (14)

over a discrete set of frequencies θ ∈ Θh. Here Θh denotes a discretization of
Θ = [−π, π]d (e.g. using 64 points in each direction).

The core idea of a multigrid algorithm comes from a combination of the
effect of a smoother, and a coarse-level correction; the coarse-level correction
aims to tackle the low-frequency Fourier components of the error, whereas
the smoother aims to reduce the high-frequency ones. The Fourier modes φh
(8) on Gh, are categorized as low-frequency, if they can be well-represented
on the coarse grid GH ; otherwise they are high-frequency. For example, with
standard coarsening, φh(·, θ) is low-frequency if θ ∈ Θlow = [−π2 ,

π
2 )d, and

high-frequency modes if θ ∈ Θhigh def
= Θ \Θlow. Consider an ‘idealized’ coarse-

level correction operator QHh , instead of KH
h (10) or Kh (11), which eliminates

1The LFA results presented in Section 3, in particular, are obtained using the software from
Wienands [27], which we extended for sixth-order accuracy as well as for additional choices of
coarse-level operators. The LFA results in Section 5 are produced using Matlab codes we developed.
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the low-frequency modes completely, while keeping the high-frequency modes
intact. That is, QHh φh(·, θ) = 0, for θ ∈ Θlow; QHh φh(·, θ) = 1, for θ ∈
Θhigh. The resulting theoretical multigrid cycle will have an iteration operator
Sν2h Q

H
h S

ν1
h , instead of Mh (9) or (12), which then characterizes the smoother’s

ability in reducing high-frequency components of the error. Accordingly, the
smoothing factor of a multigrid cycle is defined as

µ
def
= [σ(Sν2h Q

H
h S

ν1
h )]

1
ν , (15)

where ν = ν1 + ν2, and again, σ(·) denotes the spectral radius of an operator.
Multigrid convergence can be greatly improved by tuning the relaxation pa-
rameter ω of the smoother. For example, we usually show results for multigrid
cycles with an over-relaxed red-black smoother, which is very effective for the
discrete Laplace operator (and also effective for the anisotropic Laplace opera-
tor with moderate anisotropy). The factor µν is used as a reference convergence
rate for a multigrid cycle, which measures the asymptotic convergence rate
of a theoretic cycle with an ideal coarse-level correction. Thus the smoothing
parameter ω is often chosen in textbooks to optimize the smoothing factor
µ (15). Through local Fourier analysis, however, we find that we can gener-
ally achieve faster convergence if we instead choose the value of ω to directly
optimize the asymptotic convergence rate ρ (7) of the actual multigrid cycle.
This is explained specifically for the model problem discretized to fourth-order
accuracy in Section 3.

In this paper, the theoretical LFA results are often compared to computa-
tions on the finite domain [0, 1]d with periodic boundaries, discretized on the
fine grid

Gh =
{

xj = jh : j ∈ {0, 1, · · · , N}d
}
, h =

1

N
, (16)

with N ∈ N. We present the computational results in terms of the convergence
rate (CR) and effective convergence rate (ECR). The convergence rate is given
by

CR
def
=
‖d(n+1)
h ‖h
‖d(n)
h ‖h

, (17)

which implicitly depends on the iteration number n, but we usually choose n
to be sufficiently large so that the reduction of error and residual is close to
the ACR = ρ. Note that CR approaches ACR as n gets large,

lim
n→∞

CR = lim
n→∞

‖d(n+1)
h ‖h
‖d(n)
h ‖h

= σ(LhMhL
−1
h ) = σ(Mh) = ρ = ACR. (18)

The effective convergence rate is a normalized measure of the convergence rate
of a multigrid cycle, defined by

ECR
def
= CR

1
WU , (19)
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which takes into account the computational cost in each cycle, measured in
work-units (WU). One one work-unit is defined to be the number of floating-
point operations (FLOPS)2 needed for a single Jacobi smoothing step for the
difference equation on the finest level. (For example, for the two-dimensional
model problem on a Cartesian grid, a V[2, 1] multi-level cycle can be estimated
to have WU ≈ 5, for both the second- and fourth-order accurate schemes.)
In particular, note that for the Jacobi iteration, its ECR is equal to its CR.
The ECR can be interpreted as the convergence rate that a Jacobi (or Gauss-
Seidel) iterative solver would need to achieve, per iteration, in order to match
the convergence of the multigrid cycle. A good multigrid algorithm may be
expected to have an ECR in the range 0.5 to 0.8, independent of h (while the
ECR for the Jacobi iteration alone is of order 1−O(h2) and thus approaches one
as h→ 0). In this paper, we often show the consistency of the CR, computed
from the convergence history of applying a multigrid solver to a numerical
test on a finite grid, with the asymptotic convergence rate ACR = ρ, obtained
from local Fourier analysis, in accordance with (18) (for example, in Figure 4
and Figure 6). We also show how the ACR = ρ, and ECR, depend on the
smoothing parameter ω in LFA results. (Note that, for LFA results, the ECR
(19) can be defined using the ACR, instead of the CR; the actual definition
of the ECR is normally clear from the context.) It is of particular interest to
see how far away the optimal ω (to minimize the convergence rate) is from the
default value ω = 1. (For example, in Figure 2.)

3 High-order accurate discretizations with
second-order accurate coarse-level operators

In this section, we consider using lower-order accurate operators on coarse
levels when solving the model problem of Poisson’s equation to fourth- and
sixth-order accuracy. This will be a desirable approach to use in practice, since
it is likely to be less expensive, and more importantly, it eases the process of
generating coarser levels for overset grids. We will show, through LFA results,
that the use of lower-order accurate coarse-level operators is very effective and
generally results in convergence rates comparable to, or better than, those
obtained using high-order accurate coarse-level solves. In the next Section 4,
we will show that the idea can be applied to overset grids by presenting some
sample results.

There is a simple heuristic argument that suggests why the coarse-level
solves can be obtained using lower-order accurate approximations. In Algo-
rithm 1, the error equation on the first coarse level only needs to be solved
approximately. The multigrid algorithm uses a coarse-level error equation to
obtain an estimate of the current error, which is served as a correction to
the current solution. We can gauge how accurate this coarse-level correction
needs to be, so as to not degrade the performance of the overall cycle. The

2We acknowledge that FLOPS do not tell the whole story on modern computer architectures
and so the results presented here are more of a rough guideline.



Springer Nature 2021 LATEX template

Multigrid with Nonstandard Coarsening 11

error reduction per cycle is approximately the asymptotic convergence rate
ACR = ρ (7), which is roughly in the range 10−2 to 10−1 in a typical (good)
multigrid algorithm. Thus a typical coarse-level solve at the first coarse level
(l = 1, obtained recursively with the multigrid cycle if lmax > 1) provides a

correction ṽ
(n)
h to the fine grid (at level l = 0), which, as an estimate to the

current error v̄
(n)
h ≡ uh− ū(n)

h , has a relative error of roughly the size of ρ, 10−2

to 10−1. It therefore seems reasonable to suppose that a coarse-level correction
with a relative error of such size can be provided by a lower-order (e.g. second-
order) accurate approximation on the coarse level instead. Here we show this
to be true for fourth- and sixth-order accurate fine-level discretizations of the
model problem.

Consider the model problem (3a) with the fourth-order accurate operator

Lh = L
(4)
h given in (3b). We consider the red-black Gauss-Seidel smoother with

an over-relaxation parameter ω, which consists of two partial Gauss-Seidel
steps on the red and black points, GRh = {xj = h [j1, j2]T : j1+j2 ∈ Z1}, GBh =
G \GRh (where Z1 denotes odd integers), respectively. The smoothing operator
is given by Sh = SBh SRh , where

SRh =

{
SGSh on GRh
Ih on GBh

, SBh =

{
SGSh on GBh
Ih on GRh

, (20)

in which SGSh (ω) = −(L+
h )−1L−h , with L+

h = 1
12h2


1
0

1 0 60 1
ω 0 0

0
0


h

, L−h =

Lh − L+
h .

Consider a coarse grid GH from standard coarsening, H = 2h. Typ-
ical transfer operators to use are the full-weighting restriction and linear
interpolation operators

IHh =
1

16

1 2 1
2 4 2
1 2 1

2h

h

, IhH =
1

4

1 2 1
2 4 2
1 2 1

h
2h

, (21)

of second-order accuracy. The natural choice of the coarse-level operator is
either the non-Galerkin operator with the same stencil as the fine-level Lh,
or the Galerkin coarse-level operator LH = IHh LhI

h
H . The main idea of this

section is to consider coarse-level operators induced from the second-order ac-

curate fine-level operator L
(2)
h given in (3b), instead of Lh = L

(4)
h . That is, the

non-Galerkin operator with the same stencil as L
(2)
h and the “Galerkin”3 oper-

ator given by LH = IHh L
(2)
h IhH . Note that this makes the coarse-level problem

3Here “Galerkin” is in quotations since the coarse-level operator does not come from the

actual operator on the fine level Lh = L
(4)
h .
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LH vH = dH to be of second-order accuracy, which requires less complexity in
both the grid and the solver on the coarse level.

Besides the order of accuracy of the coarse-level operators, for higher-order
accurate fine-level discretizations, it may also be a natural consideration to
use higher-order accurate transfer operators. Thus for completeness we also
consider the cubic interpolation operator and its adjoint restriction operator,

IHh =
1

1024



1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 144 81 0 −9
−16 0 144 256 144 0 −16
−9 0 81 144 81 0 −9
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1



H

h

, (22a)

IhH =
1

256



1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 144 81 0 −9
−16 0 144 256 144 0 −16
−9 0 81 144 81 0 −9
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1



h

H

, (22b)

which are of fourth-order accuracy, in place of (21). In this case, we still con-
sider the fourth-order accurate non-Galerkin coarse-level operator with the

same stencil as the fine-level Lh = L
(4)
h , as well as the Galerkin operator

constructed from the fourth-order accurate transfer operators (22).
In Figure 2 (top) we plot the asymptotic convergence rate ACR = ρ, of

two-level V[1, 1] and three-level V[2, 1] cycles, as typical examples, versus
the smoothing parameter ω4. We compare the various choices of coarse-level
correction operators KH

h = Ih − IhHL
−1
H IHh Lh discussed above, that is, combi-

nations of transfer and coarse-level operators (Table 1). We also show µν , the
expected ACR based on the smoothing rate with an ideal coarse-level correc-
tion, for comparison. We can observe that the fourth-order accurate transfer
and coarse-level operators give ACRs that are closest to µν , which reflects the
fact that the resulting coarse-level correction operators are higher-order ac-
curate approximations to the ideal QHh . On the other hand, this is the most
computationally expensive combination. We see that the second-order accurate
coarse-level operators, along with second-order accurate transfers, do no worse
than the fourth-order accurate alternatives. In fact, by adjusting the value of
the smoothing parameter ω, we can usually achieve better ACRs. For exam-
ple, from Figure 2 (top right), for a three-level V[2, 1] cycle, to minimize the
smoothing rate µ (dashed black line represents µν), one may choose ω ≈ 0.97
(circled in blue), whereas to minimize ρ given the second-order Galerkin coarse-
level operator (yellow curve with cross), for example, the optimal ω ≈ 1.1

4For multi-level cycles the same ω for smoothing is used on every level.
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(circled in purple). Thus with the second-order Galerkin coarse-level operator
(yellow curve with cross), the optimal ACR is ρ(ω∗ ≈ 1.1) ≈ 0.02; in compar-
ison, if ω is tuned to minimize µ, one would get ACR = ρ(ω ≈ 0.97) ≈ 0.04.
This supports our claim that faster convergence can be achieved by tuning ω
to optimize ρ instead of µ, and with ω we can achieve comparable or even
better ACRs with lower-order coarse-level operators.

Table 1 Transfer and coarse-level operators for fourth- or sixth-order fine-level operator
Lh. These operators are represented for the first coarse level ; the operators for coarser
levels are defined recursively in the same way.

Lh
transfers
IHh , IhH

coarse-level operators LH

L
(4)
h

I(2)

2nd-order
accurate

nG(4)
LH = L

(4)
H 4th-order accurate non-

Galerkin
nG(2)

LH = L
(2)
H 2nd-order accurate

G LH = IHh LhI
h
H

(constructed from Lh = L
(4)
h and I(2))

Galerkin

G(2)
LH = IHh L

(2)
h IhH 2nd-order accurate

(constructed from L
(2)
h and I(2))

‘Galerkin’

I(4)

4th-order
accurate

nG(4)
LH = L

(4)
H 4th-order accurate

non-
Galerkin

G LH = IHh LhI
h
H (4th-order accurate, con-

structed from Lh = L
(4)
h and I(4))

Galerkin

L
(6)
h

I(2)

2nd-order
accurate

nG(6)
LH = L

(6)
H 6th-order accurate non-

Galerkin
nG(2)

LH = L
(2)
H 2nd-order accurate

G LH = IHh LhI
h
H

(constructed from Lh = L
(6)
h and I(2))

Galerkin

G(2)
LH = IHh L

(2)
h IhH 2nd-order accurate

(constructed from L
(2)
h and I(2))

‘Galerkin’

From Figure 2 (top) we can make out the optimal ω for each choice of
coarse-level correction operator KH

h for a multigrid cycle. In Figure 3 (left) we
record the optimal ACRs for the various choices of transfer and coarse-level
operators at their respective optimal ω. It can be seen that the use of second-
order accurate coarse-level operators gives ACRs comparable to those with the
fourth-order accurate ones. Note that the LFA results in Figure 2 give good
estimates for the ACRs of general multi-level V and W cycles in practice, with
the V cycles being estimated from the corresponding three-level results, and
the W cycles from the two-level results. This correspondence between cycle
type and number of levels is well-known [28]. Thus from these LFA estimated
ACRs we can find the optimal values of the smoothing parameter ω to choose
for the corresponding multi-level cycles.

A more fair comparison between the multigrid cycles will also take into
account the computational cost (WU5) and therefore in Figure 3 (right) we

5We estimate the work-units for a multigrid cycle based on using as many levels as possible [7].
Non-Galerkin coarse-level operators have some advantage in terms of WU over Galerkin opera-
tors because of their sparser stencils, especially for the simple example of the standard discrete
Laplacians.
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opt ρ

opt µν

opt µν

opt ρ
opt µν

ν=2 ν=3

;

opt ρopt µν
opt ρ

opt µν

ν=2 ν=3

;

Figure 2 ACR = ρ versus ω (LFA results). 2D, 2-level and 3-level V cycles with red-black
Gauss-Seidel smoothing (ν sweeps per cycle), with transfer and coarse-level operators as
given in Table 1. Top: order 4; bottom: order 6. Left: 2-level V[1, 1] cycles; right: 3-level
V[2, 1] cycles.

Figure 3 Optimal ACR = ρ and ECR (LFA results). 2D, order 4, V (γ = 1) and W (γ = 2)
cycles with red-black Gauss-Seidel smoothing (ν sweeps per cycle); with transfer and coarse-
level operators as given in Table 1, at their respective optimal ω. The 3-level ACR is used to
estimate the ECR of the corresponding multi-level V cycle (γ = 1), while the 2-level ACR
is used to estimate the ECR of the corresponding multi-level W cycle (γ = 2).
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provide estimates of the ECRs (here ECR is normalized from the ACR) for
typical multi-level V (γ = 1) and W (γ = 2) cycles. Again, the three-level LFA
estimated ACRs are used for corresponding multi-level V cycles, while the two-
level ACRs are used for corresponding multi-level W cycles. The algorithms
using second-order accurate coarse-level correction operators are found to be
always as good as, or better, than those using higher-order accurate ones. These
results provide some good justification for the use of second-order accurate
coarse-level correction operators for fourth-order accurate fine-level discretiza-
tions, especially given the added benefits for grid generation associated with
using lower-order accurate approximations on coarse levels.

We wish to see if second-order accurate coarse-level operators can also
be used even for sixth-order accurate discretizations without any significant
effect on the convergence rates. We consider the standard sixth-order accurate
finite-difference stencil for the two-dimensional (negative) Laplacian

L
(6)
h =

1

180h2



−2
27
−270

−2 27 −270 980 −270 27− 2
−270

27
−2


h

. (23)

We use the second-order accurate transfer operators (21). On the coarse lev-

els, we consider operators constructed from the second-order accurate L
(2)
h ,

in comparison with coarse-level operators constructed from the actual fine-
level operator (23) (see Table 1). ACRs are given in Figure 2 (bottom) for
the two-level V[1, 1] and three-level V[2, 1] cycles, which are similar to the
fourth-order results. Overall the best convergence rates are obtained using the
second-order accurate Galerkin coarse-level operators. We conjecture that the
same conclusion will hold for eighth- and higher-order accurate discretizations.

4 Compatibility boundary conditions and
sample overset grid results

In general, we aim to achieve fast multigrid convergence on overset grids, sim-
ilar to LFA results on infinite Cartesian grids. An important consideration for
a multigrid solver on general domains is the discretization of boundary con-
ditions; this becomes even more prominent for higher-order accurate schemes.
The goal is to minimize the effect of the domain boundary, so as to maintain
multigrid convergence rates comparable to those on an infinite or periodic do-
main. If we can discretize the physical boundary conditions in such a way
that the resulting system enjoys multigrid convergence properties comparable
to LFA, then the conclusions we obtained based on LFA in Section 3, such as
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lower-order accuracy on coarse levels, as well as optimal values of the smooth-
ing parameter ω, can hopefully be then applied in our overset-grid multigrid
solver to obtain similar convergence rates.

In this section, we argue that LFA multigrid convergence rates can
be matched on general geometry when the boundary conditions are dis-
cretized numerically using compatibility boundary conditions. We first study,
in Section 4.1, the effect of numerical boundary conditions on multigrid
convergence via a model problem. Then, in Section 4.2, we present some rep-
resentative convergence results on a sample overset grid, using compatibility
boundary conditions, as well as incorporating some LFA-based conclusions
from Section 3. Performance of the multigrid solver on overset grids is com-
pared to an AMG solver and two selected Krylov-space solvers in Section 4.3.

4.1 Compatibility boundary conditions for a model
problem

To illustrate how the discretization of boundary conditions affects multigrid
convergence, let us consider a simple one-dimensional example, the following
boundary value problem on the domain [0, 1],{

−∂2
x u = f, x ∈ (0, 1);

u(0) = g0, ∂xu(1) = g1.
(24)

(Here the PDE reduces to just an ordinary differential equation, but to be

consistent we still keep the notation ∂kx = dk

dxk
for the kth derivative.) The

corresponding eigenvalue problem is{
−∂2

x φ = λφ, x ∈ (0, 1);

φ(0) = 0, ∂xφ(1) = 0,
(25)

yielding the eigenfunctions

φ(x) = sin [(n− 1

2
)πx], n ∈ Z, (26)

which are Fourier modes with a certain phase and periodicity. Consider a
fourth-order accurate discretization of the differential equation on the grid
xj = jh, j = 0, 1, · · · , N − 1, N ; h = 1/N,

−D(4)
xx Uj = f(xj), j = 1, · · · , N − 1, (27)

where

D(4)
xx

def
= D+D−(1− h2

12
D+D−) (28)
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is the standard fourth-order accurate central-difference approximation to the
second derivative, in which D+ and D− are the standard forward and backward
divided-difference operators,

D+Uj
def
=

Uj+1 − Uj
h

, D−Uj
def
=

Uj − Uj−1

h
. (29)

If the problem is defined on the whole infinite domain (or a periodic domain),
the eigenfunctions of (27) will be the discrete Fourier modes φh(x, θ) (8) (d =
1) used in LFA. Thus when solving the system with multigrid, the convergence
rate can be estimated by examining how the multigrid iteration operates on
each of the Fourier modes.

Compatibility Boundary Conditions (CBCs), as the name suggests, are de-
signed so as to be compatible with both the PDE and the physical boundary
conditions. The use of CBCs leads to centered numerical boundary condi-
tions, and avoids one-sided approximations which effectively include artificial
extrapolation conditions. In simple cases, such as with homogeneous Dirichlet
or Neumann boundary conditions on a square, CBCs lead to the well-known
odd or even symmetry conditions [29]. As a result the discrete eigenfunctions
have the same form as the continuous counterparts, and thus the LFA results
readily apply.

The CBCs are formally derived by assuming the solution is sufficiently
smooth so that the PDE, and its derivatives, hold on the boundary. In par-
ticular, consider the model BVP (24). For a Dirichlet boundary condition, the
first two CBCs based on the PDE are

∂2
x u = −f, (30a)

∂4
x u = −∂2

x f. (30b)

For a Neumann boundary condition, the first CBC is given by applying the
PDE on the boundary, while the second CBC is formed by applying the
boundary operator (∂x) to the PDE,

∂2
x u = −f, (31a)

∂3
x u = −∂xf. (31b)

For convenience we introduce ghost points beyond the boundaries: xj =
jh, j = −2, −1, N + 1, N + 2. The Dirichlet boundary condition and
CBCs (30) are discretized as

U0 = g0, (32a)

D(4)
xx U0 = −f(0), (32b)

(D+D−)2U0 = −∂2
x f(0), (32c)
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while the Neumann boundary condition and CBCs (31) lead to

D0(1− h2

6
D+D−)UN = g1, (33a)

D(4)
xx UN = −f(1), (33b)

D0D+D−UN = −∂xf(1). (33c)

Here D0 = 1
2 (D+ + D−) is second-order accurate centered finite-difference

approximation to ∂x. Note that even though some compatibility conditions are
only approximated to second-order accuracy the overall scheme is still fourth-
order accurate [30]. We call the resulting numerical BCs, such as (32) and (33),
compatibility numerical BCs, or numerical CBCs. It is straightforward to show
that the eigenfunctions of the resulting system will be

φh(xj) = sin [(n− 1

2
)πxj ], n = 1, · · · , N + 1. (34)

Note that φh(xj) = φ(xj). Since the eigenfunctions of the discrete system are
just the Fourier modes (with certain periodicity), the multigrid algorithm is
solving a similar problem to that studied in LFA on an infinite or periodic
domain, its convergence rate can be expected to be similar as well.

In comparison, consider using the fourth-order accurate one-sided difference
approximation and (fifth-order) extrapolation conditions at the boundaries
(note that combining a centered approximation to the Neumann boundary
condition with extrapolation conditions for the ghost points would lead to an
one-sided approximation)

U0 = g0,

U−1 = 5U0 − 10U1 + 10U2 − 5U3 + U4;
1

12h (25UN − 48UN−1 + 36UN−2 − 16UN−3 + 3UN−4) = g1,

UN+1 = 5UN − 10UN−1 + 10UN−2 − 5UN−3 + UN−4.

(35)

One can find the corresponding eigenvalues and eigenfunctions numerically.
The eigenvalues are not very different from those corresponding to the sys-
tem with CBCs (32) and (33); the eigenfunctions, however, will not be as
regular as φh (34). While the low-frequency ones will remain close to the
continuous Fourier modes, the numerical boundary conditions will introduce
high-frequency eigenfunctions that deviate significantly from (i.e. cannot be
seem as perturbations from) the continuous counterparts; thus raising chal-
lenges to a multigrid solver designed using principles from local Fourier
analysis. Since the eigenspaces of a multigrid iteration consists of these dif-
ferent eigenfunctions, the convergence property corresponding to the system
with (35) will deviate from LFA. More specifically, the eigenfunctions will no
longer enjoy the aliasing property of the Fourier modes, and each of these dif-
ferent high-frequency eigenfunctions (modes), once represented on the coarse
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grid, will generally have to be a combination of all of the low modes. This
will result in a coarse-level correction operator that no longer enjoys a simple
block structure in the eigen-basis, and is therefore likely to be less effective in
reducing the low-frequency modes. The multigrid convergence rate, in turn,
will very likely be hindered.

Figure 4 Comparison of multigrid convergence with compatibility and one-sided numerical
boundary conditions, 1D, 4th-order accurate (red-black smoothing with ω = 1, V[1, 1] cycle,
4th-order non-Galerkin coarse-level operator). The LFA estimated asymptotic convergence
rate (ACR = ρ) is plotted in dashed black line as reference.

In Figure 4, we present results from a numerical test applying a multigrid
solver for the model problem (24) using the scheme (27), paired with the
numerical boundary conditions (32) and (33), versus (35). As we can see,
the multigrid convergence rate with compatibility boundary conditions is very
close to the asymptotic convergence rate estimated from local Fourier analysis,
while with the one-sided boundary conditions the convergence is significantly
hindered. We also observe from the numerical test that in the latter case the
error (residual) near the boundary becomes dominant.

4.2 Sample overset-grid results

In this section, we present some evidence that good multigrid convergence rates
can be obtained on complex geometry using overset grids, based on the knowl-
edge gained from our local Fourier analysis of the model problem (such as in
Section 3). In order to achieve similar convergence rates on an overset grid to
those estimated from LFA, we employ many strategies in our multigrid solver.
Two main issues that must be addressed are the numerical treatment of the
physical boundary conditions on general curved boundaries, and the treatment
of the residual near interpolation boundaries between the component grids.
Our guiding principle is to attempt to retain smooth behavior of the residual
(error) near physical or (artificial) interpolation boundaries so that the resid-
ual can be well-represented on the next coarser level. In this case, one might



Springer Nature 2021 LATEX template

20 Multigrid with Nonstandard Coarsening

expect that the residual (error) will be reduced during the multigrid iteration
as if the computation were being performed on a single, infinite domain. In
Section 4.1 we have studied the treatment of physical boundary conditions us-
ing compatibility boundary conditions for a model problem, and showed that
good multigrid convergence can be obtained with little effect from the bound-
ary. On an overset grid, CBCs are applied on the physical boundaries of all
component grids. These conditions are discretized in the parameter (computa-
tional) space (see [31] for details). The effect of interpolation boundaries, and
its treatment with a composite smoother, are studied in other works [1]. A
detailed discussion of our multigrid algorithm on overset grids, using nonstan-
dard coarse-level operators and optimized cycles with a composite smoother, is
beyond the scope of the current paper. Instead, we present some representative
results. The overset grids are generated using Ogen, and the multigrid results
are generated using the Ogmg solver, both available in the Overture6 frame-
work. Figure 5 shows an overset grid for three shapes embedded in a rectangle.
This shapes grid illustrates a typical configuration where most of the domain
is covered by one or more Cartesian background grids, while boundary con-
forming grids are confined to narrow regions around the curved boundaries.
As the mesh is refined, a larger and larger percentage of the grid points would
lie in the Cartesian grids. Our multigrid algorithm on overset grids leads to
very efficient overall computations; in particular, special optimizations on the
smoother for Cartesian grids greatly increases the overall efficiency.

Figure 5 An overset grid for some shapes. Left: fine grid. Right: magnified view showing
the boundary fitted curvilinear grids around each shape. A large majority of the grid points
lie in the blue background grid.

Figure 6 compares the multigrid convergence when solving Poisson’s
equation with Dirichlet boundary conditions on an uniform square reference
grid as well as on the shapes grid shown in Figure 5. For each of these
two grids there are four convergence results shown, comparing simulations to
fourth-order accuracy and those to second-order accuracy, using Galerkin and

6Available at: http://www.overtureframework.org

http://www.overtureframework.org
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Figure 6 Multigrid convergence. Top: LFA estimated convergence (3-level). Bottom left:
results for a square with 10242 grid points (10 levels); bottom right: corresponding results
for the shapes overset grid (4 levels). Results are shown for second-order accuracy (circles),
fourth-order accuracy (squares), with Galerkin (green markers) and non-Galerkin (red mark-
ers) coarse-level operators. Using compatibility boundary conditions, the convergence rates
for the overset grid are comparable to those for a square.

non-Galerkin coarse-level operators. For the fourth-order accurate computa-
tions, in particular, second -order accurate operators are used on coarse levels,
as discussed in Section 3. Compatibility boundary conditions are employed
to discretize the physical boundary conditions to the appropriate order-of-
accuracy. The first thing to observe is that the multigrid convergence rates
for fourth-order accurate schemes are quite comparable with those for second-
order accuracy. The square grid uses a V[2, 1] cycle with a red-black smoother
using ω = 1.1, which is the optimized parameter value for the fourth-order ac-
curate scheme with second-order Galerkin coarse-level operators on Cartesian
grids, based on the three-level LFA results in Section 3 (ω = 1.1 is also a good
parameter value for the other three multi-level cycles). The shapes overset grid
uses an adaptive cycle [1] together with additional smoothing in the vicinity
of interpolation boundaries. In particular, the background grid of the shapes
grid uses the same V[2, 1] cycle and smoother (with ω = 1.1) as the square
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grid. Figure 6 (bottom left) shows convergence results for a square grid, while
Figure 6 (bottom right) shows results for the shapes grid on the same vertical
scale. For reference, we also present the LFA estimated convergence history
(based on the corresponding three-level V cycles) in Figure 6 (top). The con-
vergence on the square grid, as expected, agrees with the LFA estimates very
well. The convergence on the shapes overset grid also compares favorably with
the LFA estimates. It is seen that the convergence history for the overset grid
is similar to that for the simple square, both showing very rapid convergence.
(There are some differences between the two cases but these are fairly minor.)
We can conclude from these results that it is possible to obtain textbook -like
convergence results for overset grids even at fourth-order accuracy, when using
second-order accurate coarse-level operators.

4.3 Comparison of Ogmg to AMG and Krylov solvers

In this section, we present some computational performance data to compare
our multigrid solver for overset grids with some standard iterative solvers.
The CPU setup and solve times, and memory usage, are presented for the
overset-grid multigrid solver Ogmg, an algebraic multigrid (AMG) solver, and
two Krylov solvers. Results are presented for the uniform square grid and
shapes grid described in Section 4.2 when solving the model problem of Pois-
son’s equation with Dirichlet boundary conditions, to second- and fourth-order
accuracy.

CPU time (s) storage
Grid order Solver its ‖res‖∞ total setup solve reals/pt

Square 2 Ogmg 9 9.4e-10 0.28 0.01 0.27 8.7
Square 2 AMG 12 1.9e-07 6.26 3.07 3.19 99.8
Square 2 BiCGSt 371 8.6e-08 23.27 0.97 22.30 64.3
Square 2 GMRES 1307 8.8e-08 68.64 1.14 67.50 86.4
Square 4 Ogmg 9 1.7e-08 0.49 0.01 0.48 8.4
Square 4 AMG 24 3.6e-08 15.43 4.77 10.66 178.0
Square 4 BiCGSt 277 1.9e-08 27.42 1.79 25.63 113.1
Square 4 GMRES 657 9.6e-09 61.82 2.85 58.97 155.8
Shapes 2 Ogmg 9 3.5e-09 0.76 0.14 0.62 14.9
Shapes 2 AMG 35 6.6e-10 8.22 1.95 6.27 112.6
Shapes 2 BiCGSt 325 8.0e-09 11.67 0.58 11.10 61.9
Shapes 2 GMRES 710 3.3e-09 22.20 0.64 21.56 83.6
Shapes 4 Ogmg 10 6.3e-09 1.51 0.24 1.27 20.3
Shapes 4 AMG 241 1.9e-08 69.68 3.29 66.39 168.1
Shapes 4 BiCGSt 188 1.3e-08 11.74 1.05 10.69 107.9
Shapes 4 GMRES 254 2.1e-08 16.17 1.89 14.28 149.0

Table 2 Performance comparison of Ogmg to AMG (HYPRE/boomerAMG) and Krylov
(Bi-CG-Stab+ILU(1), GMRES+ILU(3)) solvers.

Table 2 shows the timing and memory usage for the four solvers7

considered:
• Ogmg: The Ogmg solver using V[2, 1] cycles.
• AMG: The BoomerAMG solver from HYPRE (version 2.25.0).

7The results were computed using a Intel Xeon 3.0 GHz processor.
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• BiCGSt: The bi-CG-Stab Krylov solver with an ILU(1) preconditioner
from PETSc (version 3.18.2).

• GMRES: The GMRES Krylov solver with an ILU(3) preconditioner from
PETSc (version 3.18.2).

We note that bi-CG-Stab is generally our preferred Krylov-based solver. Based
on the data in Table 2, Figure 7 shows the CPU times to solve (no setup)
relative to the time for Ogmg (top), and the memory usage, in double-precision
floating-point numbers per grid-point (reals/grid-pt) (bottom), for the four
solvers.
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Figure 7 Performance comparison of Ogmg solver to other iterative solvers, using data
from Table 2. Top: CPU times to solve (no setup) relative to the time for Ogmg; bottom:
memory usage in reals/grid-point. Left: square grid with 10242 grid points; right: shapes
overset grid (Figure 5).

The results show that the Ogmg solver is many times faster than the other
solvers. For example, on the square grid at fourth-order accuracy, Ogmg is
about 22 times faster than AMG, and 53 times faster than bi-CG-Stab, not
counting time for setup. Ogmg has both smaller setup times and smaller solve
times. Low setup times are particularly important for problems with moving
or deforming geometry where the grid changes every time-step. Ogmg also
uses significantly less memory compared to the other solvers. For example,
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on the shapes grid at fourth-order accuracy, Ogmg uses about 20 reals/grid-
pt, while AMG uses about 168 reals/grid-point, and GMRES with an ILU(3)
preconditioner uses about 149 reals/grid-pt.

It should not be surprising that Ogmg outperforms more general-purpose
solvers such as AMG and Krylov-based methods. Most of the CPU time for
Ogmg is spent in the smoothers which can be highly optimized for both
structured curvilinear grids and especially for Cartesian grids. Ogmg is also
a matrix-free solver so that the matrix coefficients on a Cartesian grid do
not need to be stored. On a curvilinear grid, the metric derivatives, ∂ri/∂xj
(where r is in parameter space with change-of-variables from the physical space
x [1]), are stored instead of the matrix coefficients, and this is a benefit for
higher-order accurate approximations with wider stencils. We note that AMG
performs rather poorly on the shapes grid at fourth-order accuracy. It is likely
that the AMG algorithm can be adjusted, or a specialized preconditioner could
be designed, to improve the performance, but we have not attempted that here.

5 Coarsening by a general factor r

As discussed in the introduction, the generation of coarse-level overset grids
is a major challenge in multigrid solvers on overset grids [1]. Unlike for a sin-
gle Cartesian grid, where one can simply force the number of grid points in
each space direction to support a certain number of multigrid levels (for exam-
ple, with sufficient factors of two), such strict constraints for each component
grid will strongly restrict the construction of quality overset grids. Thus for
flexibility in multi-level overset-grid generation, we wish to relax this kind of
restriction, and allow coarsening by a general factor r. In this section, we study
factor-r coarsening on the model problem (see Figure 8, right, for an illustra-
tion). Multigrid is a balance between smoothing, which reduces high-frequency
components of the error, and the coarse-level correction, which reduces low-
frequency components. The coarsening factor r affects this balance since it
changes the relative decomposition of the error into its high and low-frequency
components. In particular, we wish to determine whether using a coarsen-
ing factor r in the neighborhood of two achieves convergence rates similar to
that with standard coarsening. In addition, it is also of interest to investigate,
more generally, what value of r leads to the best multigrid convergence in any
dimension.

Consider the model problem (3a) in d space dimensions with the standard
second-order accurate finite-difference stencil, on a fine grid Gh as given in
(16) with size N . Suppose we have a target grid-coarsening factor, denoted
by rtarget (> 1). To construct a coarse grid with spacing H = rh, where the

actual coarsening factor r ≈ rtarget, set M
def
= bN/rtargetc 8, H = 1/M, r

def
=

H/h = N/M. Given the fine grid Gh and coarse grid GH = {kH : k ∈
{0, 1, · · · , M}d}, we construct the transfer operator IhH using linear interpola-
tion, and define the restriction operator as the adjoint IHh = (IhH)∗ = (IhH)T /rd.

8The floor function bac denotes the largest integer less than or equal to a ∈ R.
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Figure 8 Some coarsening strategies in two dimensions. Left: standard coarsening, H = 2h.
Right: coarsening by a general factor r, H = rh.

The non-Galerkin coarse-level operator LH uses the same stencil as Lh, while
the Galerkin LH = IHh LhI

h
H can be derived from the transfer operators. Based

on the two-level construction, it is straightforward to construct a general multi-
level algorithm with a target coarsening factor rtarget. Let rl denote the actual
coarsening factor from level l to level l + 1. If there are N0 ≡ N = 1/h grid
points in each direction on the finest level, then the number of grid points
in each direction at level l + 1 is Nl+1 = bNl/rtargetc, and the corresponding
coarsening factor rl = Nl/Nl+1 = hl+1/hl, for l = 0, 1, · · · , lmax − 1.

For a fair comparison in terms of the optimal rtarget, we choose the number
of coarse levels as

lmax(rtarget) ≈ logrtarget
N0

Nmin
∝ 1

log rtarget
, (36)

so that the coarsest level has approximately a fixed number of grid points
Nmin. In one dimension it is not surprising that the optimal choice would
be rtarget = 2; in particular for the model problem at r = 2 the multigrid
algorithm becomes a direct solver. The question of optimal rtarget is more in-
teresting in two or more space dimensions. The multigrid algorithm involves
a trade-off between reducing the convergence rate, and increasing the compu-
tational cost (measured by WU). As r approaches one, the coarse-level solve
becomes more close to exact (reducing the CR), but also more expensive (in-
creasing the WU), and thus for a fair comparison we choose the ECR as a
good metric for choosing the optimal r. Figure 9 shows convergence rates from
multi-level V[1, 1] cycles with factor-r coarsening in two dimensions. (Results
are shown for the non-Galerkin coarse-level operators, that is, the same sten-
cil is used on every level; graphs for the Galerkin coarse-level operators are
expected to be similar in form.) The multi-level CRs, which roughly mimic
the two-level results, increase approximately monotonically as r increases. The
convergence rate goes to zero at r = 1 since the coarse grids all approach the
fine grid and there is an exact solve on the coarsest level. The ECR shows a
fairly broad minimum around rtarget = 2 with a dip at exactly 2, largely due
to the work-units being discontinuously small at this value (see the discussion
in Section 5.1). We can conclude that there is a range of coarsening factors
around r = 2 where the multigrid algorithm has fast convergence, which is the
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behavior we desire; and there is no obvious optimal value of the coarsening
factor based on the ECR, except for the special behavior at r = 2.

ν=2

lmax(rtarget)

Good ECR

factor-r coarsening, 2D, multi-level

Figure 9 CR and ECR versus rtarget. 2D, multi-level V[1, 1] cycle with red-black smooth-
ing (ω = 1) and factor-r coarsening rl ≈ rtarget (and non-Galerkin coarse-level operators).
(N = 64, Nmin = 8.) A relatively good ECR can be obtained for a wide range of
rtarget ∈ (1.5, 2.5).

5.1 Local Fourier smoothing analysis of factor-r
coarsening with a Jacobi smoother

In this section, we use local Fourier analysis to better understand the compu-
tational results for factor-r coarsening given above. To simplify the analysis
we consider a multigrid cycle that uses a Jacobi smoother with a relaxation
parameter ω, combined with an ideal coarse-level correction. We choose to an-
alyze the ω-Jacobi smoother instead of the red-black smoother, because the
former is easier to analyze since the Fourier modes are its eigenfunctions, and
because with Jacobi the smoothing rate generally gives a better estimate of the
overall multigrid convergence rate (compared to the corresponding estimates
with a red-black smoother). In addition, it is straightforward to choose an op-
timal relaxation parameter ω∗(r) for the Jacobi smoothing rate, and thus we
can have a fairer comparison of the convergence rates at different r. At the
same time, we expect that the general conclusions drawn from using the Ja-
cobi smoother for studying factor-r coarsening will also hold for the red-black
smoother.

We study the model problem of Poisson’s equation on the infinite grid Gh
(1). Let Lh = −∆h be the standard second-order accurate approximation to
the negative Laplacian in d dimensions. The Jacobi smoothing operator, with
a relaxation parameter ω, is given by

Sh = Ih −
ωh2

2d
Lh. (37)
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The Fourier symbol of Sh, corresponding to φh(·, θ), θ = [θ1, · · · , θd]T ∈ Θ,
is

Ŝh(θ) = 1− 2ωξθ, ξθ
def
=

1

d

d∑
k=1

sin2 θk
2
. (38)

That is, Sh φh(·, θ) = Ŝh(θ)φh(·, θ). Consider a coarse grid Grh = {x =
j rh : j ∈ Zd} on the first coarse level. We will estimate the multigrid conver-
gence rate with factor-r coarsening based on the smoothing factor µ. For an
(h, rh) two-level cycle, the sets of low and high frequencies are given by

Θlow
r

def
=
[
− π

r
,
π

r

)d
, Θhigh

r = Θ \Θlow
r . (39)

The smoothing factor of ω-Jacobi is thus determined from the worst-case
convergence rate over the high frequencies:

µ(r, ω)
def
= sup

θ∈Θhigh
r

|Ŝh(θ)| = sup
ξ∈[ζ, 1]

|1− 2ωξ| = max
{
|1− 2ωζ|, |1− 2ω|

}
,

(40)

where

ζ(r)
def
=

1

d
sin2 π

2r
. (41)

An optimal relaxation parameter ω∗ can be chosen to minimize the smoothing
factor:

µ∗(r)
def
= µ(r, ω∗(r)) =

1− ζ(r)

1 + ζ(r)
, ω∗(r) =

1

1 + ζ(r)
. (42)

Figure 10 (left) plots µ∗ in different dimensions d, and it can be seen that
µ∗(r) is a monotone increasing function for r > 1. For a multigrid cycle with ν
smoothing steps, the convergence rate ρmight be expected to be approximately
(µ∗)ν .

We focus on the two-dimensional case (d = 2), and to compare to the
theoretical estimates we compute the actual convergence rates of a multigrid
algorithm with Jacobi smoothing and ω∗ as given in (42). Computed CRs using
V[1, 1] and W[1, 1] multi-level cycles are compared to the theoretical curve
(µ∗)ν in Figure 10 (right). As might be expected, the W cycle results compare
quite well with the theoretical estimates except for some deviation as r tends
to one. The V cycle results compare well with the theoretical estimates for
r > 2 but there is a more pronounced deviation for r < 2 where the computed
convergence rate levels off to a value of CR ≈ 0.35. This deviation from the
theoretical estimates comes from the distinction between the actual and ideal
coarse-level corrections which is more prominent as r approaches one, and thus
can not be explained by smoothing analysis alone.
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Figure 10 Left: Smoothing rate µ∗ versus r in d dimensions. Right: CR versus rtarget, in
comparison with the estimate µν in 2D (d = 2), V (γ = 1) and W (γ = 2) cycles with ω∗-
Jacobi smoothing (ν = 2) and factor-r coarsening (and non-Galerkin coarse-level operators;
N = 64, Nmin = 8).

Figure 11 ESR (estimate of the ECR) versus r. V (γ = 1, left) and W (γ = 2, right) multi-
level cycles with ω∗-Jacobi smoothing (ν = 2) and factor-r coarsening; in 2D (d = 2) in
comparison with computed ECR (with non-Galerkin coarse-level operators; N = 64, Nmin =
8).

To get an idea of which coarsening factor rtarget gives the fastest algorithm
we compare the effective convergence rates. To do this, we estimate the work-
units of a general multi-level γ-cycle with factor-r coarsening by

WU[r; γ, ν] ≈ (ν + 3)

lmax−1∑
l=0

(
γ

rd
)l−1, (43)

where lmax is chosen as before in (36). Note the change in behavior in the WU
depending on whether γ < rd or γ ≥ rd. However, at exactly r = 2 (or factors
of 2) the WU is somewhat reduced due to the alignment of the coarse grid
points with half the fine grid points. Approximating the convergence rate by
ρ ≈ (µ∗)ν , we define the effective smoothing rate,

ESR
def
= (µ∗)

ν
WU , (44)
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as an estimated ECR for a multigrid cycle with ν smoothing steps. This esti-
mated ECR is graphed in Figure 11 for V (γ = 1) and W (γ = 2) cycles with
ν = 2. Thus we can estimate the optimal coarsening factor from the ESR: for a
V cycle, the optimal coarsening factor has a value r < 2, in particular for d = 2
the minimizer r ≈ 1.55; for a W cycle the optimal coarsening factor r ≈ 1.97 is
close to 2 in two dimensions while it has a value r ≈ 1.79 in three dimensions.

In two dimensions (d = 2) in particular, we also compare the estimate
ESRs (44) with ECRs from actual computations for multigrid cycles with ω∗-
Jacobi smoothing (the corresponding CRs have been presented in Figure 10,
right), as shown in Figure 11. We can see that the ESR gives a fairly good
estimate for the ECR for a W cycle. The comparison is not as good for the V
cycle when rtarget < 2, but this is to be expected due to the deviation in the
CRs from the theory as already shown in Figure 10 (right). Also, note that
the discontinuously good ECR at rtarget = 2 comes from the fact that the WU
is discontinuously low when the coarse grid is embedded in the fine grid.

Finally, let us compare the CRs in Figure 10 (right) and the ECRs in
Figure 11 (left) with Jacobi smoothing (ω = ω∗), to the results in Figure 9 with
red-black smoothing (ω = 1), in two dimensions. We can see that the red-black
smoother, as usual, gives faster convergence than the Jacobi smoother, but the
CRs and ECRs seem to vary with rtarget in a very similar manner. Thus local
Fourier smoothing analysis with the ω-Jacobi smoother appears to reasonably
describe the basic features of multigrid with general factor-r coarsening.

6 Conclusions

In this paper, we considered some nonstandard coarsening strategies for geo-
metric multigrid by studying the solution to the model problem of Poisson’s
equation. We showed that second-order accurate coarse-level operators could
be effectively used with fourth- and sixth-order accurate fine-level operators,
with generally no degradation in effective convergence rates. We described how
compatibility boundary conditions can be used to develop centered numeri-
cal boundary conditions that generally have better properties for multigrid
solvers than one-sided approximations. We showed multigrid results for a sam-
ple overset grid on a complex geometry that had comparable convergence rates
to those for a reference square domain, thus providing some justification for
our application of local Fourier analysis results to multigrid solvers on over-
set grids. Performance data for the sample overset grid showed that the Ogmg
solver was many times faster and used significantly less memory than an AMG
solver and two Krylov solvers. We also considered coarsening by a general fac-
tor r, and showed that good effective convergence rates are obtainable for a
range of coarsening factors around two. The algorithm was studied using both
local Fourier analysis and numerical simulations.
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