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Abstract
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1. Introduction

We develop high-order accurate Hermite methods for the wave equation on curvilinear grids.
Both first-order in time (FOT) and second-order in time (SOT) schemes are developed. Compati-
bility boundary conditions (CBCs) are used to give high-order accurate centered approximations to
boundary conditions rather than more common one-sided approximations; these centered boundary
conditions are generally more stable and accurate than using one sided approximations [1]. A key
result of the current article is to show how CBCs can be incorporated into Hermite schemes. This
is the first Hermite method that can handle complex geometry and boundary conditions purely
within the Hermite method framework. The Hermite method approximates the solution to a partial
differential equation using degrees of freedom at each node representing the solution and derivatives
up to degree m resulting in (m+1)d degrees of freedom per node in d dimensions. The nodal values
are interpolated to the cell centers and advanced in time using a Taylor series in time over half a
time step. The cell centered values at the half time-step are then interpolated to the nodes and
advanced the second-half time step. The evolution of the degrees of freedom is local, minimizing
the communication and storage costs. The resulting schemes have order of accuracy 2m − 1 for
the FOT scheme, and 2m for the SOT scheme. We note that when the FOT scheme is used on
Cartesian grids and with d(2m+1) terms in the Taylor series in time (see [2, 3]) the schemes have
a CFL number that is one, i.e. they are stable for c∆t/h ≤ 1 where c is the wave speed and h in
the grid spacing. This results holds at any order of accuracy and is significantly better than many
other high-order schemes. To achieve space-time accuracies of 2m − 1 for the FOT scheme it is
sufficient to use a Taylor series in time with 2m+1 terms, which is what we do here. This reduces
the time-step slightly, here we use c∆t/h = 0.5, but does not significantly change the efficiency of
the methods as the cost per time-step is reduced by a factor d. The SOT scheme is even more
efficient, requiring only m+1 terms in time for any dimension on Cartesian meshes. On curvilinear
meshes we find that we have to reduce the timestep slightly, here we use c∆t/h = 0.4.

High-order accurate Hermite methods were first introduced for hyperbolic systems of equations
by Goodrich et al. in [2]. Since then there have been many enhancements to the original methods
described in [2]. These improvements include but are not limited to order-adaptive implemen-
tations [4], flux-conservative formulation for conservation laws [5], coupling with a discontinuity
sensor to resolve kinks [6] and coupling with discontinuous Galerkin methods to handle complex
boundaries [7, 8]. In [3] the authors developed dissipative (FOT) and conservative (SOT) Hermite
interpolation based schemes for the wave equation. The schemes were developed for rectangular
geometries where boundary conditions can be imposed by a simple mirroring strategy. Here these
schemes are extended to curvilinear geometries. For complex geometries Hermite methods have
been used as efficient building blocks in hybrid methods. In [8] the authors developed a hybrid
Hermite-discontinuous Galerkin (DG) scheme for solving hyperbolic systems and in [7] a Hermite-
DG scheme was developed for the wave equation. The DG approach was used on curvilinear grids
near boundaries, but suffered from a smaller time-step restriction than the Hermite method. One
goal of the current work is to develop Hermite schemes for curvilinear domains with boundaries
so they can eventually be used on overset grids which consist of overlapping curvilinear grids near
boundaries and one or more background Cartesian grids. In this way efficient high-order accurate
Hermite methods with large CFL time-steps can be used for complex geometry. As with all high
order accurate methods, to achieve design rates of convergence, Hermite methods require that the
solutions are smooth enough. Here we only consider examples that have smooth solutions. Prob-
lems with non-smooth solutions discretized with high order accurate Hermite methods were studied
in [9] where it was found that (just as for finite difference methods [10]) they have sublinear rates
of convergence but with constants that decrease rapidly with order.
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Compatibility boundary conditions have been used for finite-difference methods for many years
(at least since the early 1980s). For example, in [11–13] the authors use compatibility conditions for
second-order and fourth-order accurate approximations of the incompressible Navier-Stokes equa-
tions. For wave problems, compatibility conditions have been used in [14] for compressible Navier-
Stokes and linear elasticity [15], as well as high-order schemes for Maxwell’s equations [14, 16]. Shu
and collaborators have used CBCs in their inverse-Lax-Wendroff approach for hyperbolic equations
and conservation laws [17–20] as well as for parabolic and advection-diffusion equations [21, 22].
CBCs are used in the book by Gustafsson on high-order difference methods [23]. CBCs have been
used by LeVeque and Li with their immersed interface method to develop accurate approximations
at embedded interfaces [24–26]. CBCs have also been used to derive stable and accurate embedded
boundary approximations [27–29]. CBCs have been incorporated into summation-by-parts schemes
by Sjögreen and Petersson for the equations of elasticity [30]. Another example where compatibility
conditions are used for wave propagation is in the difference potential method by Petropavlovsky
et al. [31].

In recent work [1], the authors develop local compatibility boundary conditions (LCBCs) for
high-order accurate finite difference methods on Cartesian and curvilinear grids. The LCBC ap-
proach was actually first inspired by the CBC approach described in the present article for use with
Hermite methods (even though publication of the LCBC method appears first).

A large number of methods for the wave equation have been proposed in the literature. An
incomplete list is, finite difference methods based on the summation-by-parts framework [32] and up-
winding [33, 34], finite element methods which use mass lumping to achieve efficiency [35], discontin-
uous Galerkin methods [36–39], as well as more exotic methods such as Fourier-Continuation [40, 41]
and Galerkin differences [42]. We contend that Hermite methods have unique properties (in partic-
ular the order independent CFL number in combination with the ∼ 2mth order using ∼ (m + 1)d

degrees of freedoms per element) that makes their development for use on more general geometries
worthwhile.

The remainder of the paper is organized as follows. In Section 2 the governing equations
are presented together with a discussion of curvilinear grids and the representation of discrete
solutions for the Hermite schemes. A high-level summary of the Hermite schemes is given in
Section 3. Section 4 describes the compatibility boundary condition approach for both Cartesian
and curvilinear grids. An analysis of the solvability and conditioning of the systems of linear
equations resulting from the CBC approximations is given in Section 5. Numerical results are
presented in Section 6. The Appendices contain some proofs, a description of the evolution operators
for the Hermite schemes, as well as some practical implementation details.

2. Preliminaries: governing equations, grids, and discrete approximations

2.1. Governing equations

We consider the initial boundary-value problem for the solution u = u(x, t) to the scalar wave
equation

∂2u

∂t2
= c2∆u+ f(x, t), x ∈ Ω, t > 0, (1a)

u(x, 0) = U0(x), x ∈ Ω, (1b)

∂u

∂t
(x) = U1(x), x ∈ Ω, (1c)

Bu(x, t) = g(x, t), x ∈ ∂Ω. (1d)
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Here c > 0 is the wave speed, x = [x1, x2] = [x, y], and f(x, t) and g(x, t) are given forcing functions.
The operator B in (1d) denotes the boundary condition operator being of Dirichlet or Neumann
type. The initial conditions for u and ∂tu are given in terms of known functions U0(x) and U1(x).
In this article we focus on problems in d = 2 space dimensions but note that the method can be
extended to three dimensions.

2.2. Mappings and parameter space equations

To discretize (1) on a structured curvilinear grid, we assume there exists a smooth and invertible
mapping G,

x = G(r), (2)

from the unit square coordinates r = [r1, r2] = [r, s] ∈ [0, 1]2 to the physical domain coordinates
x ∈ Ω. Using the chain rule the wave equation (1a) can be transformed to parameter space

∂2
t U = c2∆rU + F (r, t), (3a)

c2∆rU
def
= a20(r)

∂2U

∂r21
+ a11(r)

∂2U

∂r1∂r2
+ a02(r)

∂2U

∂r22
+ a10(r)

∂U

∂r1
+ a01(r)

∂U

∂r2
, (3b)

where U(r, t) = u(G(r), t), F (r, t) = f(G(r), t), and the coefficients are

a20 = c2 ∥∇xr1∥2 = c2
[
(∂x1r1)

2 + (∂x2r1)
2
]
, (3c)

a02 = c2 ∥∇xr2∥2 = c2
[
(∂x1r2)

2 + (∂x2r2)
2
]
, (3d)

a11 = c2 2(∇xr1 · ∇xr2) = 2(∂x1r1 ∂x1r2 + ∂x2r1 ∂x2r2), (3e)

a10 = c2 (∂2
x1

+ ∂2
x2
)r1, (3f)

a01 = c2 (∂2
x1

+ ∂2
x2
)r2. (3g)

In the remainder of the article we will write u(r, t) instead of U(r, t). We note that here we only
consider a constant wave speed, but that a spatially variable wave speed can easily be incorporated
since we are already discretizing a variable coefficient problem in the reference domain.

2.3. Grids, Taylor polynomial representations and Hermite interpolants

The unit square parameter space will be discretized with a primal (node centered) grid and a
dual (cell centered) grid. Let ri denote points on either the primal or dual grid, where i = [i1, i2] =
[i, j] is a multi-index. The primal grid points are

ri = [i1∆r1, i2∆r2], ik = 0, 1, 2, . . . , Nk, (4a)

∆rk =
1

Nk
, (4b)

where ∆rk is the grid spacing in coordinate direction k and Nk is the number of grid cells. We also
use ∆r = ∆r1 and ∆s = ∆r2. The dual grid points are

ri = [i1∆r1, i2∆r2], ik =
1

2
,
3

2
,
5

2
, . . . , Nk −

1

2
, (5)
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The spatial approximation to u near the grid point ri is represented as a Taylor polynomial
with (m+ 1)2 degrees of freedom (DOF),

ui(r) =

m∑
l1=0

m∑
l2=0

ui,l1,l2 R
l1
i Sl2

j , (6a)

Ri
def
=

r − ri
∆r

, Sj
def
=

s− sj
∆s

, (6b)

where the integer m is the degree of the approximation and where ui,l1,l2 is an approximation to
the scaled derivative of u,

ui,l1,l2 ≈ ∆rl1

l1!

∆sl2

l2!
∂l1
r ∂

l2
s u(ri). (7)

We also denote as ui the set of DOFs (or grid function) associated with the Taylor polynomial,

ui = {ui,l1,l2}l1,l2=0,1,...,m . (8)

The Hermite interpolant, centered at ri, is the polynomial that interpolates the solution and it’s
derivatives at the four neighbouring points [i1± 1

2 , i2±
1
2 ] and has the representation, with (2m+2)2

degrees of freedom, of the form

ūi(r) =

2m+1∑
l1=0

2m+1∑
l2=0

ūi,l1,l2 R
l1
i Sl2

j . (9)

The over-bar on ūi(r) will indicate that this representation has (2m + 2)2 DOFs. See Appendix
C.1 for details on forming the interpolant.

3. Hermite algorithms

The basic structure of Hermite scheme (FOT or SOT) is given in Algorithm 1 and illustrated
in Figure 1. In the algorithm, uni denotes an approximation to the DOFs (solution and derivatives)
at time tn = n∆t, where ∆t is the time-step. The algorithm requires a function IH to compute
the Hermite interpolant, a function TH to evolve the solution over a half time-step, and a function
BH to assign the boundary conditions. P denotes the index set of primal points, D the index set
of dual points, and ∂P the index set of primal boundary points. Recall that the over-bar on a
variable denotes a grid function with (2m + 2)

2
DOFs, while no over-bar is a grid function with

(m + 1)
2
DOFs. Note that for the FOT scheme, degrees of freedom will be stored for both the

solution u and it’s time derivative v = ∂tu, but these and other details are left out to simplify the
presentation.

The FOT and SOT schemes used here are the extensions, to curvilinear grids, of the dissipa-
tive and conservative schemes from [3]. More details of these curvilinear grid schemes are given
in Appendix B and Appendix C.

The SOT scheme has less natural dissipation than the FOT scheme. When solving problems
on curvilinear grids it may be necessary to add some additional dissipation to the SOT scheme
so as to retain stability without needing to reduce the time-step. Algorithm 2 shows one way to
add dissipation by using the dissipative nature of the Hermite interpolant. In this algorithm the
solution on the primal grid is interpolated to the dual grid, boundary conditions are applied, and
then the solution is interpolated back to the primal. This process can be repeated Ns times. This
smoothing stage can be applied after the second evolution stage in Algorithm 1 (i.e. after line 10).
Smoothing the solution will not change the order of accuracy.
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Algorithm 1 Hermite time-stepping algorithm.

1: function Hermite
2: Compute ∆t and number of time-steps Nt.
3: Assign initial conditions.
4: for n = 1, 2, . . . , Nt do ▷ Begin time-stepping loop
5: tn = (n− 1)∆t ▷ Current time.
6: ūn

j = IH(u
n
i ), i ∈ P , j ∈ D ▷ Interpolate to dual grid.

7: u
n+ 1

2

j = TH(ū
n
j ), j ∈ D ▷ Evolve on dual grid to tn +∆t/2.

8: ū
n+ 1

2

k = BH(u
n+ 1

2

j ), k ∈ ∂P . ▷ Apply BCs to primal at t+∆t/2.

9: ū
n+ 1

2

i = IH(u
n+ 1

2

j ), i ∈ P , j ∈ D ▷ Interpolate to primal.

10: un+1
i = TH(ū

n+ 1
2

i ), i ∈ P ▷ Evolve on primal to tn +∆t.
11: end for ▷ End time-stepping loop
12: end function

1. Start tn 2. Interpolate to dual tn 3. Evolve dual tn+
1
2 4. BCs tn+

1
2

5. Interp. to primal tn+
1
2 6. Evolve primal tn+1

(m+ 1)2 DOF

(2m+ 2)2 DOF

Figure 1: Stages of the Hermite FOT and SOT schemes. Open circles have (m+ 1)2 degrees of freedom while solid
circles have (2m+ 2)2 degrees of freedom.

4. Compatibility boundary conditions

Compatibility boundary conditions (CBCs) for the wave equation are derived by first taking
even time-derivatives of the boundary conditions. The governing equation (1a) is then used to
replace even time-derivatives of u with spatial derivatives of u. The resulting conditions can be
used as numerical boundary conditions. These centered conditions are generally more stable and
accurate than using one sided approximations [1]. To illustrate the process for deriving CBCs,
consider a Dirichlet boundary condition (Neumann BCs are similar)

u(x, t) = g(x, t), x ∈ ∂Ω. (10)

Taking two time-derivatives of (10)

∂2
t u(x, t) = ∂2

t g(x, t), (11)
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Algorithm 2 Hermite smoothing for the SOT scheme.

1: function HermiteSmooth(ui)
2: for k = 1, 2, . . . , Ns do ▷ Apply Ns smoothing steps
3: ūj = IH(ui), i ∈ P , j ∈ D ▷ Interpolate to dual grid.
4: ūk = BH(uj), k ∈ ∂P . ▷ Apply BCs to primal.
5: ūi = IH(uj), i ∈ P , j ∈ D ▷ Interpolate to primal.
6: end for ▷ End smoothing steps
7: end function

and using (1a) gives the first CBC for Dirichlet boundary conditions,

Lu(x, t) + f(x, t) = ∂2
t g(x, t), x ∈ ∂Ω, (12)

where L is the wave operator,

L
def
= c2∆. (13)

The next CBC can be derived by taking two time-derivatives of (12). The process can be repeated
to derive any number of CBCs. The CBCs (such as (12)), together with tangential derivatives
of the CBCs, are used to constrain the Taylor polynomial representation of the solution on the
boundary.

4.1. CBCs on a Cartesian grid

Figure 2 shows a sample grid configuration in two dimensions. Given values ul1,l2,j for points
j ∈ D on the dual grid (open circles in Figure 2), we require values ūl1,l2,k for points k ∈ ∂P on
the boundary of the primal grid (solid circles in Figure 2).

xi,j

(m+ 1)2 DOF

(2m+ 2)2 DOF

Figure 2: Compatibility boundary conditions, together with interior data, are used to define the Hermite representa-
tion on the boundary.

Consider the case of a Cartesian grid for the unit square with grid points xi = (xi, yj). Let
xi,j = (xi, yj) be a point on the boundary at x = 0 (not a corner). The goal is to define the
(2(m+ 1))2 DOFs in the Taylor polynomial representation of the solution on the boundary,

ūi,j(x) =

2m+1∑
l1=0

2m+1∑
l2=0

ūl1,l2,i,j X
l1
i Y l2

j , Xi
def
=

x− xi
∆x

, Yj
def
=

y − yj
∆y

. (14)
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As indicated in Figure 2, the polynomial (14) is required to match the DOFs from the two nearby
interior points. The scaled derivatives of the boundary polynomial (14) are

∆xα

α!

∆yβ

β!
∂α
x ∂

β
y ūi,j(x) =

2m+1∑
l1=α

2m+1∑
l2=β

ūl1,l2,i,j
(l1)(. . .)(l1 − α+ 1)

α!

(l2)(. . .)(l2 − β + 1)

β!
X l1−α Y l2−β,

(15)

and these, when evaluated at (xi+∆x/2, yj±∆y/2), are matched to the given interior dual (scaled)
derivatives,

uα,β,i1+ 1
2
,i2± 1

2
, α, β = 0, 1, . . . ,m. (16)

to give the 2(m+ 1)2 interpolation conditions,

2m+1∑
l1=α

2m+1∑
l2=β

(
l1
α

)(
l2
β

) [
1

2

]l1−α [
±1

2

]l2−β

ūl1,l2,i = uα,β,i1+ 1
2
,i2± 1

2
, α, β = 0, 1, . . . ,m. (17)

A further 2(m + 1)2 conditions are needed to uniquely determine ūl1,l2,i and these are obtained
using CBCs.

Dirichlet boundary conditions. Consider a Dirichlet boundary condition at x = 0

u(0, y, t) = g(y, t). (18)

The CBCs are

∂α
y L

q ūi(0, yj) = ∂2q
t ∂α

y g(yj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1. (19)

Using the binomial expansion gives

∂α
y L

q = c2q ∂α
y (∂2

x + ∂2
y)

q = c2q
q∑

k=0

(
q

k

)
∂2(q−k)
x ∂2k+α

y . (20)

This leads to the 2(m+ 1)2 CBC conditions

c2q
q∑

k=0

(
q

k

)
(2(q − k))!

∆x2(q−k)

(2k + α)!

∆y2k+α
ū2(q−k),2k+α,i = ∂2q

t ∂α
y g(yj , t), (21)

for q = 0, 1, . . . ,m, and α = 0, 1, . . . , 2m+ 1. Note that in (21), only terms with 2k + α ≤ 2m+ 1
should be kept. Equations (17) together with (21) define a linear system of equations for the
unknowns ūl1,l2,i on a Dirichlet boundary.

Neumann boundary conditions. Now consider a Neumann boundary condition at x = 0 ,

∂xu(0, y, t) = g(y, t), (22)

10



The CBCs are

∂α
y ∂xL

qp(0, yj) = ∂2q
t ∂α

y g(yj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1. (23)

This leads to the CBC conditions

c2q
q∑

k=0

(
q

k

)
(2(q − k) + 1)!

∆x2(q−k)+1

(2k + α)!

∆y2k+α
ū2(q−k)+1,2k+α,i = ∂2q

t ∂α
y g(yj , t), (24)

for q = 0, 1, . . . ,m, and α = 0, 1, . . . , 2m + 1. Equations (17) together with (24) define a linear
system of equations for the unknowns ūl1,l2,i on a Neumann boundary.

4.2. CBCs for corners on a Cartesian grid

Now consider assigning the solution at the corner point, such as the solution at the lower left
point, xi = [0, 0], in Figure 2. At this corner there is one interior neighbour on the dual grid at
index i = [12 ,

1
2 ]. Following the discussion for a point on the interior of a side, the conditions to

match the coefficients in the Hermite polynomial to coefficients of the polynomial at the interior
point are the (m+ 1)2 conditions,

2m+1∑
l1=α

2m+1∑
l2=β

(
l1
α

)(
l2
β

) [
1

2

]l1−α [
1

2

]l2−β

ūl1,l2,i = uα,β,i1+ 1
2
,i2+

1
2
, α, β = 0, 1, . . . ,m. (25)

A further 3(m + 1)2 conditions are needed to uniquely determine ūl1,l2,i and these are obtained
using CBCs. In subsequent sub-sections we discuss Dirichlet-Dirichlet (D-D), Neumann-Neumann
(N-N), and Dirichlet-Neumann corners (D-N). This discussion closely follows that given in [1] but
is adjusted to the setting of Hermite methods.

4.2.1. Dirichlet-Dirichlet CBC corner

Consider a Dirichlet-Dirichlet corner at x = 0,

u(x, 0, t) = g1(x, t), (26a)

u(0, y, t) = g2(y, t). (26b)

The CBCs are

∂α
xL

qūi(xi) = ∂α
x ∂

2q
t g1(0, t), q = 0, 1, . . . ,m, (27a)

∂α
y L

qūi(xi) = ∂α
y ∂

2q
t g2(0, t), q = 0, 1, . . . ,m, (27b)

for α ∈ Mq, where Mq is the set of integers,

Mq
def
= {0, 1, . . . , 2m+ 1} − {0, 2, 4, . . . , 2(q − 1)}. (28)

The set Mq consists of the integers from 0 to 2m+1 minus the even integers from 0 to 2(q− 1). In
addition, the conditions in (27) should be averaged when α = 2q. The set Mq was derived in [1].
At a corner, the union of the compatibility conditions from adjacent faces are not all independent
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and the set Mq was determined by choosing a independent set of conditions by examining the
CBCs in the case of a Cartesian grid. As an example, when q = 1, M1 is missing 0,

M1 = {1, 2, 3, 4, 5, . . . , 2m+ 1}, (29)

and we average the conditions when α = 2,

∂xLūi(xi) = ∂2q
t ∂x∂

2
t g1(0, t), (α = 1), (30a)

∂yLūi(xi) = ∂2q
t ∂y∂

2
t g2(0, t), (α = 1), (30b)

1

2
(∂2

xLūi(xi) + ∂2
yLūi(xi)) =

1

2
(∂2

x∂
2
t g1(0, t) + ∂2

y∂
2
t g2(0, t)), (α = 2), (30c)

∂α
xLūi(xi) = ∂2q

t ∂α
x ∂

2
t g1(0, t), α = 3, 4, 5, . . . , 2m+ 1 (30d)

∂α
y Lūi(xi) = ∂2q

t ∂α
y ∂

2
t g2(0, t), α = 3, 4, 5, . . . , 2m+ 1 (30e)

When q = 2, M2 is missing {0, 2},

M2 = {1, 3, 4, 5, . . . , 2m+ 1}, (31)

and we average the conditions when α = 4,

∂α
xL

2ūi(xi) = ∂2q
t ∂α

x ∂
4
t g1(0, t), α = 1, 3, (32a)

∂α
y L

2ūi(xi) = ∂2q
t ∂α

y ∂
4
t g2(0, t), α = 1, 3, (32b)

1

2
(∂4

xL
2ūi(xi) + ∂4

yL
2ūi(xi)) =

1

2
(∂4

x∂
4
t g1(0, t) + ∂4

y∂
4
t g2(0, t)), (α = 4), (32c)

∂α
xL

2ūi(xi) = ∂2q
t ∂α

x ∂
4
t g1(0, t), α = 5, . . . , 2m+ 1 (32d)

∂α
y L

2ūi(xi) = ∂2q
t ∂α

y ∂
4
t g2(0, t), α = 5, . . . , 2m+ 1 (32e)

In summary, the CBC D-D corner conditions are (or an average of these conditions when α = 2q )

c2q
q∑

j=0

(
q

j

)
(2(q − j) + α)!

∆x2(q−j)+α

(2j)!

∆y2j
ū2(q−j)+α,2j,i = ∂2q

t ∂α
x g1(0, t),

c2q
q∑

j=0

(
q

j

)
(2(q − j))!

∆x2(q−j)

(2j + α)!

∆y2j+α
ū2(q−j),2j+α,i,= ∂2q

t ∂α
y g2(0, t),

(33a)

(33b)

for q = 0, 1, 2, . . . ,m and α ∈ Mq. Note that only entries with valid indices l1 and l2 for ūl1,l2,i in
(33) should be kept. Equations (25) and (33) define a linear system of equations to determine the
Hermite coefficients in the D-D orner at x = 0.

Here we count the number of equations to ensure we have a square system. The set Mq has
2m+ 2− 2q elements. From (27) there are 2(2m+ 2− 2q)− 1 equations obtained, the minus one
is a result of averaging when α = 2q. Thus, the total number of equations is given by

m∑
q=0

2(2m+ 2− 2q)− 1 = 3(m+ 1)2, (34)

which is the number of equations required. The arguments for obtaining a square system for the
remaining cases follow a similar computation.
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4.2.2. Neumann-Neumann CBC corner

Now consider a Neumann-Neumann corner at x = 0,

∂yu(x, 0, t) = g1(x, t), (35a)

∂xu(0, y, t) = g2(y, t). (35b)

The CBCs are

∂α
x ∂yL

qūi(xi) = ∂α
x ∂

2q
t g1(0, t), q = 0, 1, . . . ,m, (36a)

∂α
y ∂xL

qūi(xi) = ∂α
y ∂

2q
t g2(0, t), q = 0, 1, . . . ,m. (36b)

Following the argument from the previous section, the CBC N-N corner conditions are thus (or an
average of these conditions when α = 2q + 1)

c2q
q∑

j=0

(
q

j

)
(2(q − j) + α)!

∆x2(q−j)+α

(2j + 1)!

∆y2j+1
ū2(q−j)+α,2j+1,i = ∂2q

t ∂α
x g1(0, t),

c2q
q∑

j=0

(
q

j

)
(2(q − j) + 1)!

∆x2(q−j)+1

(2j + α)!

∆y2j+α
ū2(q−j)+1,2j+α,i = ∂2q

t ∂α
y g2(0, t),

(37a)

(37b)

for q = 0, 1, 2, . . . , 2m+ 1 and α ∈ Nq. Here Nq is the set

Nq
def
= {0, 1, . . . , 2m+ 1} − {1, 3, 5, 7, . . . , 2q − 1}. (38)

The set Nq consists of the integers from 0 to m minus the odd integers from 1 to 2q−1. In addition
the conditions in (37) should be averaged when α = 2q + 1. As for the case of a D-D corner, the
set Nq was derived by choosing an independent set of conditions by examining the CBCs in the
case of a Cartesian grid. Note that only entries with valid indices l1 and l2 for ūl1,l2,i in (37) should
be kept. Equations (25) and (37) define a linear system of equations to determine the Hermite
coefficients in the N-N corner at x = 0.

4.2.3. Dirichlet-Neumann CBC corner

Consider a Dirichlet-Neumann corner at x = 0, with Neumann on the bottom face, and Dirichlet
on the left face,

∂yu(x, 0, t) = g1(x, t), (39a)

u(0, y, t) = g2(y, t). (39b)

The CBCs are

∂α
x ∂yL

qūi(xi) = ∂α
x ∂

2q
t g1(0, t), q = 0, 1, . . . ,m, (40a)

∂β
yL

qūi(xi) = ∂β
y ∂

2q
t g2(0, t), q = 0, 1, . . . ,m. (40b)

Following the argument from the previous section, the CBC D-N corner conditions are thus (or an
average of these conditions when α = 2q + 1)

c2q
q∑

j=0

(
q

j

)
(2(q − j) + α)!

∆x2(q−j)+α

(2j + 1)!

∆y2j+1
ū2(q−j)+α,2j+1,i = ∂2q

t ∂α
x g1(0, t),

c2q
q∑

j=0

(
q

j

)
(2(q − j))!

∆x2(q−j)

(2j + β)!

∆y2j+β
ū2(q−j)+1,2j+β,i = ∂2q

t ∂β
y g2(0, t),

(41a)

(41b)
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for q = 0, 1, 2, . . . ,m and (α, β) ∈ Mq × Nq. Note that α, corresponding to the Neumann BC,
is in the set Mq associated with the Dirichlet BC on the face, while β, corresponding to the
Dirichlet BC is associated with Nq. In addition the conditions in (41) should be averaged when
(α, β) = (2q + 1, 2q). Note that only entries with valid indices l1 and l2 for ūl1,l2,i in (41) should
be kept. Equations (25) and (41) define a linear system of equations to determine the Hermite
coefficients in the D-N corner at x = 0.

4.3. CBCs on a curvilinear grid

We now consider the imposition of CBCs on a curvilinear grid. As for the Cartesian grid case,
the coefficients in the Taylor polynomial representation of the solution for a point on the boundary
will be determined from known interior data together with CBCs. The CBCs become algebraically
more complicated on a curvilinear grid and rather than writing a general formula such as (21), a
recursion is used to form the equations implied by the CBCs. Let

ūi(r) =
2m+1∑
l1=0

2m+1∑
l2=0

ūl1,l2,iR
l1
i Sl2

j , Ri
def
=

r − ri
∆r

, Sj
def
=

s− sj
∆s

, (42)

denote the Taylor polynomial representation for the solution at a point on the boundary ri = (ri, sj).
Furthermore, let Lūi have the Taylor polynomial representation

Lūi(r) =
2m+1∑
l1=0

2m+1∑
l2=0

d̄l1,l2,iR
l1
i Sl2

j , (43)

where the application of wave operator L to the Hermite representation is described in Appendix
C.3.

4.3.1. Dirichlet CBCs on a curvilinear grid

The CBCs for a Dirichlet boundary condition at the point ri = (ri, sj) on the boundary at
r = 0, are

∂α
s L

qūi(ri) = ∂α
s ∂

2q
t g(sj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1. (44)

For q = 0 this gives the conditions

α!

∆sα
ū0,α = ∂α

s g(sj , t), α = 0, 1, . . . , 2m+ 1. (45)

Let ū ∈ R(2(m+1))2 and d̄ ∈ R(2(m+1))2 denote the vectors with components ūl1,l2,i and d̄l1,l2,i, for
l1, l2 = 0, 1, . . . , 2m+ 1 and fixed i,

ū =
[
ū0,0,i ū1,0,i ū2,0,i . . . ū2m+1,2m+1,i

]T
, (46)

d̄ =
[
d̄0,0,i d̄1,0,i d̄2,0,i . . . d̄2m+1,2m+1,i

]T
, (47)

where the dependence of ū and d̄ on i has been suppressed. We then have the following relationship
between the coefficients of ūi and Lūi,

d̄ = LHū, (48)
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where LH is the matrix implied by (43) (for details see Appendix C.4). The CBC (45) for q = 0
can then be expressed as

α!

∆sα
eT[0,α]ū = ∂α

s g(sj , t), α = 0, 1, . . . , 2m+ 1, (49)

where e[0,α] = eα(2m+1) denotes the unit vector corresponding to the entry ū0,α in the vector ū. In
general we have

α!

∆sα
eT[0,α]L

q
Hū = ∂α

s ∂
2q
t g(sj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1. (50)

The CBCs are thus

α!

∆sα

[
zqα

]T
ū = ∂α

s g(sj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1, (51a)

where the vectors zqα satisfy the recursion[
z0α

]T
= eT[0,α], (51b)[

zqα

]T
=

[
zq−1
α

]T
LH , q = 1, 2, . . . ,m. (51c)

The equations in (51) together with the matching conditions (17) define a linear system of equations
to determine the unknowns ūl1,l2,i.

Note that the form of (51) for a Cartesian grid is just the same as (51) but with L being the
Cartesian grid version and ∂n and ∂s being replaced by one of ∂x or ∂y.

4.3.2. Neumann CBCs on a curvilinear grid

The CBCs for a Neumann BC at the point ri on the boundary at r = 0 are

∂α
s ∂nL

qūi(ri) = ∂α
s ∂

2q
t g(sj , t), q = 0, 1, . . . ,m, α = 0, 1, . . . , 2m+ 1, (52a)

where the normal derivative is

∂n = n · ∇ = n1∂x + n2∂y = (n1rx + n2ry)∂r + (n1sx + n2sy)∂s = b1(r, s)∂r + b2(r, s)∂s. (52b)

Let ∂nūi have the Taylor polynomial representation

∂nūi(r) =
2m+1∑
l1=0

2m+1∑
l2=0

n̄l1,l2,iR
l1
i Sl2

j . (53)

Following the previous section, let ū denote the vector of coefficients for ūl1,l2,i. In terms of this
vector of unknowns, the Neumann CBCs can then be expressed as

α!

∆sα
eT[0,α]NHL

q
Hū = ∂α

s ∂
2q
t g(sj , t), (54a)

or

α!

∆sα
wT

αL
q
Hū = ∂α

s ∂
2q
t g(sj , t), (54b)

wT
α

def
= eT[0,α]NH . (54c)
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where NH is the matrix implied by (53). The vectors[
zqα

]T def
= wT

αL
q
H , (55a)

can be computed with the recursion[
z0α

]T
= eT[0,α]NH , (55b)[

zqα

]T
=

[
zq−1
α

]T
LH , q = 1, 2, . . . ,m, (55c)

and the CBCs are

α!

∆sα

[
zqα

]T
ū = ∂α

s ∂
2q
t g(sj , t). (55d)

The equations in (55) together with the matching conditions (17) define a linear system of equations
to determine the unknowns ūl1,l2,i.

4.3.3. Corner CBCs on a curvilinear grid

The CBCs at a corner follow the discussion in Section 4.2 for a Cartesian grid, except that the
equations for the CBCs for the Dirichlet or Neumann case on a Cartesian grid should be replaced
with the corresponding equations for a curvilinear grid. For example, at a D-D corner one should
use the interpolation conditions (25), and replace the Cartesian grid compatibility conditions (27)
with the corresponding curvilinear variants such as (44).

5. Analysis of the CBCs

In this section, we analyze the compatibility boundary conditions developed in Section 4. We
consider the solvability and conditioning of the resulting linear system of equations. We also analyze
the symmetry properties that arise when using CBCs on a Cartesian grid.

We write the boundary conditions developed in Section 4 as a linear system

M ū = b, (56)

where ū and b are vectors of degree 4(m + 1)2 and M is a matrix of size 4(m + 1)2 × 4(m + 1)2.
This system consists of the interpolation conditions (17) together with the appropriate CBCs. In
order for this system to be solvable we require the matrix M to be non-singular. We aim to derive
a set of conditions that guarantees solvability.

5.1. Solvability of the CBC matrix systems on Cartesian grids

The equations appearing in M should be scaled to improve the conditioning of the matrix. A
standard approach to improve the conditioning is to scale each row by the largest entry in absolute
value. This will be called row scaling. Further improvements to the conditioning can be obtained
through a process known as equilibration4. For Cartesian grids we consider the max-norm condition
number of M defined in the usual way as

κ∞(M)
def
= ∥M∥∞ ∥M−1∥∞, (57)

4The Matlab function equilibrate permutes and rescales the matrix to have diagonal entries of magnitude one
and off-diagonal entries of magnitude at most one. The HSL Mathematical Software Library [43], http://www.hsl.
rl.ac.uk, also has scaling routines that can be used to improve the conditioning.
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where the max-norm of a matrix is the maximum row-sum of the magnitudes of the matrix elements.
We consider, without loss of generality, a boundary at x = 0. Let γ denote the tall-cell ratio,

γ
def
=

∆x

∆y
. (58)

Theorem 1 (CBC solvability for Cartesian grids.). The matrix M resulting from the CBC
equations on a Cartesian grid with Dirichlet or Neumann boundary conditions or at a corner where
Dirichlet or Neumann boundary conditions meet is nonsingular for m = 1, 2, 3, 4. Furthermore, the
max-norm condition number of the row-scaled M only depends on the ratio γ = ∆x/∆y and thus
remains unchanged as the mesh is refined.

The proof of Theorem 1 for m = 1, 2, 3, 4 is given in Appendix A. We conjecture that the result
holds for any positive integer m. As an example, here is the form of the condition number for
m = 1, for Dirichlet and Neumann boundaries,

κ∞(M) = max(41, 28 + 3γ2)×max(
121

16
, 1 + γ2), (Dirichlet), (59a)

κ∞(M) = max

(
125

16
, 1 + γ2,

21

4
+

3γ2

4

)
×max

(
121

16
, 1 + γ2

)
, (Neumann). (59b)

Note that the condition numbers in (59) scale in proportion to γ2 and thus become large as γ get
large. This is a known phenomena from other discretizations that use CBCs: the grid spacing
normal to the boundary should not be too large compared to the grid spacings in the tangential
directions.

Table 1 summarizes the condition numbers for Dirichlet and Neumann boundaries and corners
for γ = 1. Results for row-scaling and equilibration (Matlab) of the matrix are shown. Equilibration
roughly reduces the condition number by a factor of 10 over row-scaling.

CBC Condition Number κ∞(M) for Cartesian Grids

BC m = 1 m = 2 m = 3 m = 4 m = 5

rs eq rs eq rs eq rs eq rs eq
D 3.1e2 4.8e1 5.8e3 7.2e2 1.3e5 1.2e4 3.8e6 1.7e5 9.7e7 2.5e6
N 5.9e1 1.4e1 7.0e2 1.8e2 1.4e4 3.6e3 3.3e5 4.4e4 7.5e6 5.9e5

D-D 5.4e2 4.0e1 8.3e3 5.4e2 1.8e5 9.0e3 4.8e6 1.4e5 1.2e8 2.1e6
N-N 5.7e1 7.0e1 2.7e2 2.6e2 2.9e3 6.7e2 3.8e4 1.1e4 6.3e5 1.7e5
D-N 1.6e2 1.8e1 1.4e3 5.0e1 2.2e4 2.9e3 4.2e5 1.4e5 8.5e6 7.8e5

Table 1: Max-norm condition numbers of the CBC matrices with row-scaling (rs) and equilibration (eq) for γ =
∆x/∆y = 1. D denotes a Dirichlet BC, N a Neumann BC, D-D a Dirichlet-Dirichlet corner and so on.

5.2. Solvability of CBC matrix systems on curvilinear grids

To study the solvability of the CBC matrix on a curvilinear grid we freeze coefficients near a
point on the boundary and consider the wave equation with the constant coefficient operator

L0 = c20 ∂2
r + 2c11 ∂r∂s + c02 ∂2

s + c10 ∂r + c01 ∂s. (60)

The matrix M in the CBC matrix can be formed symbolically for this case and it’s determinant
can be evaluated. This leads to the following result.
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Theorem 2 (CBC solvability for Curvilinear grids.). The CBC matrix M for the constant-
coefficient operator L0 in (60) with Dirichlet or Neumann boundary conditions, for m = 1, 2, 3, 4,
is non-singular provided c20 > 0 and ∆r is sufficiently small (left or right face) or c02 > 0 and ∆s
is sufficiently small (top or bottom face). If c10 = 0 (left or right face) or c01 = 0 (top or bottom
face), then the matrix is non-singular for any ∆r and ∆s.

Proof. We will focus on the left boundary at r = 0, the arguments for the other boundaries are
done similarly. For Dirichlet or Neumann boundary conditions, the determinant of the matrix M ,
has the form

det(M) = KmGm(ξ), ξ
def
=

c10∆r

2c20
, m = 1, 2, 3, 4, (61)

where Km is a non-zero constant that depends on ∆r, ∆s and c20, and Gm(ξ) is a polynomial with
Gm(0) = 1. For Dirichlet boundary conditions the polynomials are given by

G1(ξ) =

[
1− ξ

4

]4
, (62a)

G2(ξ) =

[
1− 9

16
ξ +

3

32
ξ2 − 1

192
ξ3
]6

, (62b)

G3(ξ) =

[
1− 29

32
ξ +

5

16
ξ2 − 7

128
ξ3 +

1

192
ξ4 − 1

3840
ξ5 +

1

184320
ξ6
]8

, (62c)

G4(ξ) =
[
1− 325

256
ξ +

345

512
ξ2 − 155

768
ξ3 +

235

6144
ξ4 − 99

20480
ξ5 +

245

589824
ξ6 (62d)

− 199

8257536
ξ7 +

5

5505024
ξ8 − 1

49545216
ξ9 +

1

4954521600
ξ10

]10
. (62e)

For Neumann boundary conditions the corresponding polynomials are

G1(ξ) =

[
1− ξ

2

]4
, (63a)

G2(ξ) =
[
1− ξ +

1

4
ξ2 − 1

48
ξ3
]6
, (63b)

G3(ξ) =
[
1− 3

2
ξ +

3

4
ξ2 − 35

192
ξ3 +

3

128
ξ4 − 1

640
ξ5 +

1

23040
ξ6
]8
, (63c)

G4(ξ) =
[
1− 2ξ +

3

2
ξ2 − 233

384
ξ3 +

29

192
ξ4 − 63

2560
ξ5 +

31

11520
ξ6 (63d)

− 127

645120
ξ7 +

1

107520
ξ8 − 1

3870720
ξ9 +

1

309657600
ξ10

]10
. (63e)

For ξ sufficiently small it can be seen that Gm(ξ) > 0 and thus the matrix M is nonsingular. In
particular, Table 2 gives the largest ξ = ξmax such that Gm(ξ) > 0 for 0 ≤ ξ ≤ ξmax for the functions
above. □

To study the actual conditioning of the CBC matrices in practice, Figure 3 graphs κ∞(M) for
the CBC matrices on two curvilinear grids as the mesh is refined. The polynomial mapping and
the X mapping defined in Section 6.1 are considered (see Figure 4) for different boundary and
corner conditions. Results are shown for the row scaled matrix and the equilibrated matrix. The
condition numbers are seen to increase with the Hermite degree m. The condition numbers are
fairly constant or sometimes decrease as ∆r decreases.
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ξmax

BC G1 G2 G3 G4

Dirichlet 4.00 2.23 2.65 2.35
Neumann 2.00 1.48 2.23 1.08

Table 2: Largest ξ = ξmax such that Gm(ξ) > 0 for 0 ≤ ξ ≤ ξmax for the Dirichlet and Neumann case.
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Figure 3: CBC matrix condition numbers on curvilinear grids using row-scaling (rs) and equilibration (eq) for a
Dirichlet BC (D) , Neumann (N) BC, D-D corner, N-N corner, and D-N corner. Top: polynomial mapping. Bottom:
X mapping. Left column: m = 1. Middle column: m = 2. Right column: m = 3.

5.3. Symmetry properties of the CBC conditions

Consider the case of a Cartesian grid with homogeneous Dirichlet or Neumann boundary con-
ditions. Let us focus on the boundary at x = 0, the result for other boundaries will be similar. The
CBCs are

∆n ∂xu(0, y) = [∂2
x + ∂2

y ]
n ∂α

xu(0, y) = 0, n = 0, 1, 2, . . . , (64)

where α = 0 for Dirichlet boundary conditions and α = 1 for Neumann. It follows from the binomial
expansion that

∂2n
x ∂α

xu(0, y) = −
n∑

j=1

(
n

j

)
(∂2

x)
n−j(∂2

y)
j ∂α

xu(0, y). (65)

For n = 0 we have

∂α
xu(0, y) = 0, (66)

19



which implies ∂β
y ∂α

xu(0, y) = 0 for β = 0, 1, 2, . . .. Using this in the right-hand-side of (65) for n = 1
gives

∂2
x∂

α
x (0, y) = 0, (67)

which in turn implies ∂β
y ∂2

x∂
α
x (0, y) = 0 for β = 0, 1, 2, . . .. This can be used in (65) for n = 2 to

show ∂4
x∂

α
x (0, y) = 0. Repeating this argument leads to

∂2n
x ∂α

x (0, y) = 0, n = 0, 1, 2, . . . (68)

On a Dirichlet boundary with u(0, y, t) = 0 it then follows that all even x-derivatives of u are zero
on the boundary,

∂2n
x u(0, y, t) = 0, n = 0, 1, 2, . . . . (69)

This implies that u has odd symmetry in x at the boundary. On a Neumann boundary with
∂xu(0, y, t) = 0 it follows that all odd x-derivatives of u are zero

∂2n+1
x u(0, y, t) = 0, n = 0, 1, 2, . . . , (70)

and the solution has even symmetry in x at the boundary. The conditions (69) and (70) are often
used as a simple way to set numerical boundary conditions by odd or even reflection.

The next Theorem shows that the CBC approach leads to a Taylor polynomial representation
that has these same symmetry conditions.

Theorem 3 (Symmetry of the CBC conditions). The Taylor polynomial representation of the
solution, resulting from application of the CBC conditions on the boundary at x = 0 of a Cartesian
grid, has odd symmetry for homogeneous Dirichlet boundary conditions and even symmetry for
homogeneous Neumann conditions.

Proof. The Taylor polynomial representation on the boundary xi = 0 (i = 0) is

ūi,j(x) =
2m+1∑
l1=0

2m+1∑
l2=0

ūl1,l2,i,j X
l1
i Y l2

j , Xi
def
=

x

∆x
, Yj

def
=

y − yj
∆y

. (71)

For a homogeneous Dirichlet boundary condition the CBC conditions that are imposed are

∂α
y∆

qu(0, yj) = 0, q = 0, 1, 2, . . . ,m, α = 0, 1, 2, . . . , 2m+ 1. (72)

Following the argument leading to (69) these conditions imply

∂α
y ∂

2q
x u(0, yj) = 0, q = 0, 1, 2, . . . ,m, α = 0, 1, 2, . . . , 2m+ 1. (73)

Whence

ūl1,l2,i,j = 0, l1 = 0, 2, 4, . . . , 2m, l2 = 0, 1, 2, . . . , 2m+ 1. (74)

Therefore only odd powers of x remain in the Taylor polynomial, which gives the desired result.
For example, at y = yj , the polynomial takes the form

ūi,j(x, yj) = ū1,0,i,j x+ ū3,0,i,j x
3 + . . . ū2m+1,0,i,j x

2m+1. (75)

The result for Neumann boundary conditions follows by a similar argument. □
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6. Numerical results

Numerical results are now presented to demonstrate the accuracy and stability of the Hermite
schemes on curvilinear grids with compatibility boundary conditions. Results are shown for both
orthogonal and non-orthogonal grids using Dirichlet and Neumann boundary conditions.

6.1. Mappings and Grids

Plots of the grids used to evaluate the Hermite schemes are shown in Figure 4. Two of the grids,
the rhombus and X mapping, are non-orthogonal. The grids are defined in terms of mappings as
defined next.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

-0.5

0

0.5

y

Grid: map=identity

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

-0.5

0

0.5

y

Grid: map=poly

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

-0.5

0

0.5

y

Grid: map=tanh

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Grid: map=annulus

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Grid: map=rhombus

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Grid: map=X

Figure 4: Plots of the grids used in testing the Hermite schemes. Top, left to right: identity, polynomial and tanh
grids. Bottom, left to right: annulus, rhombus and X grids.

Polynomial mapping. The polynomial mapping can be used to cluster points near a boundary.
In one-dimension it takes the form

x = G(r) = xa + (xb − xa)
(
αr + (1− α)r2

)
, (76)

and maps r ∈ [0, 1] to x ∈ [xa, xb]. We choose α = 0.5. This mapping is applied in both the r1 and
r2 directions to give the polynomial grid in Figure 4.

Hyperbolic tangent mapping. The tanh mapping can be used to cluster points in the interior
of the domain. In one dimension it is defined by

x = G(r) = xa + (xb − xa)
(
αr + a(tanh(β(r − r0))− tanh(β(−r0)))

)
, (77a)

α = 1− a
(
tanh(β(1− r0))− tanh(β(−r0))

)
, (77b)

where a is an amplitude and α is chosen so x(1) = xb. We take r0 = 0.5, β = 5, and a = −0.15.
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Rhombus mapping. The rhombus mapping is a simple non-orthogonal mapping defined by

x = G(r) =

[
(1− α)r1 + αr2
(1− β)r2 + βr1

]
, (78)

where we choose α = 0.1 and β = 0.1

X mapping. The X mapping is a non-orthogonal mapping defined by

x = G(r) =

[
r1 + βr2(1− r2) sin(2πr1)
r2 + βr1(1− r1) sin(2πr2)

]
, (79)

where we take β = 0.2.

6.2. Manufactured and exact solutions

Figure 5: Rhombus. Computed solution and error using the FOT scheme with m = 3 (order 5) and the sine solution.
Boundary conditions are Dirichlet (left, bottom) and Neumann (right and top).

Sine solution. The sine solution (shown in Figure 5) is

u(x, t) = sin(kxx+ kyy − ωt), (80a)

ω = c
√
k2x + k2y. (80b)

This is an exact solution to the free space problem but requires inhomogeneous boundary conditions.

Eigenfunction of a square. Eigenfunctions of the unit square with Dirichlet boundary conditions
(see Figure 6) take the form

u(x, t) = sin(πkxx) sin(πkyy) cos(ωt), (81a)

for integer values of kx and ky, where

ω = c
√
(πkx)2 + (πky)2. (81b)

Similar expressions can be found for Neumann boundary conditions or a mix of Dirichlet and
Neumann boundary conditions.
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Figure 6: Square eigenfunction on the X grid. Computed solution and error using the SOT scheme with m = 4 (order
8).

Figure 7: Annulus eigenfunction. Computed solution and error using the SOT scheme with m = 5 (order 10).

Eigenfunction of an annulus. Eigenfunctions of an annulus with an inner radius ra = 0.5
and outer radius rb = 1.0 and with Dirichlet boundary conditions, as shown in Figure 7, are of the
form

u(r, θ, t) =
1√

c2J + c2Y

(
cJJnθ

(λnθ,nrr) + cY Ynθ
(λnθ,nrr)

)
cos(nθθ) cos(cλnθ,nr t), (82a)

cJ = Ynθ
(λnθ,nrra), cY = −Jnθ

(λnθ,nrra), (82b)

where Jnθ
and Ynθ

are the Bessel functions of the first kind. The values of the eigenvalues λnθ,nr

are roots of d(λ) = Jnθ
(λra)Ynθ

(λrb)− Jnθ
(λrb)Ynθ

(λra) = 0.

6.3. Results for the first-order in time (FOT) scheme

Grid convergence results for the FOT scheme are shown in Figure 8 for m = 1, 2, 3, 4. These
computations consider orthogonal and non-orthogonal grids, Dirichlet and Neumann boundary
conditions (or a combination thereof to test the various treatments at corners), and both exact
solutions and manufactured solutions. In particular, results are shown for the following cases,

1. Square eigenfunction, Dirichlet boundary conditions, tanh mapping,
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Figure 8: Grid convergence, Hermite FOT scheme in 2D. Figure titles give run details: S=solution type, B=boundary
conditions, G=grid type. The expected order of accuracy for the FOT scheme is 2m − 1 for a degree m Hermite
approximation.

2. Annulus eigenfunction, Dirichlet boundary conditions, annulus mapping,

3. Sine solution, Neumann boundary conditions, polynomial mapping,

4. Sine solution, Dirichlet boundary conditions, rhombus mapping,

5. Sine solution, Dirichlet (left, bottom), Neumann (right,top), tanh mapping,

6. Sine solution, Dirichlet boundary conditions, X mapping.

The relative max-norm errors are computed at time t = 0.5. The wave speed c is taken as c = 1 in
all cases. The time-step was chosen according to Appendix B.3 with CCFL = 0.5. For the square
eigenfunction and sine solution we take kx = ky = 2m−1 while for the Annulus eigenfunction we
choose the solution with nθ = 1+ 2m − 1, and nr = 2m−1. In all cases the results in Figure 8 show
that the expected order of accuracy of 2m− 1 is observed.

Figure 5 shows the computed solution and errors on the rhombus grid using the FOT scheme
and the sine solution (80). The computed results, shown at t = 0.5, are computed with m = 3
using Dirichlet boundary conditions (left, bottom), and Neumann boundary (right,top). The error
is seen to be smooth up to the boundary; this is a good indication of accuracy and quality of the
CBC conditions.
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Figure 9: Grid convergence, Hermite SOT scheme in 2D. Figure titles give run details: S=solution type, B=boundary
conditions, G=grid type. The expected order of accuracy for the SOT scheme is 2m for a degree m Hermite
approximation.

6.4. Results for the second-order in time (SOT) scheme

Grid convergence results for the SOT scheme are shown in Figure 8 for m = 1, 2, 3, 4. Results
are shown for the following cases,

1. Square eigenfunction, Dirichlet boundary conditions, tanh mapping,

2. Annulus eigenfunction, Dirichlet boundary conditions, annulus mapping, Ns = 1 smoothing
steps (algorithm 2),

3. Sine solution, Neumann boundary conditions, polynomial mapping,

4. Sine solution, Dirichlet boundary conditions, identity mapping,

5. Sine solution, Dirichlet (left, bottom), Neumann (right,top), polynomial mapping,

6. Sine solution, Dirichlet boundary conditions, X mapping, Ns = 1 smoothing steps (algo-
rithm 2).

Parameters are chosen as in section 6.3 for the FOT scheme except that here we take CCFL = 0.4.
In all cases the expected order of accuracy of 2m is observed.

Figure 6 shows the computation of a square eigenfunction (81) on the non-orthogonal X grid
using the SOT scheme using m = 4 (eight-order accurate scheme). Figure 7 shows the computation
on an eigenfunction of an annulus (82) using the SOT scheme with m = 5 (tenth order scheme).
In both cases the errors are seen to be smooth up to the boundary.
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6.5. Long time simulations

To numerically demonstrate the stability of the FOT and SOT schemes some long time simu-
lations are performed. Results are shown for the following cases,

1. Sine solution, Dirichlet (left, bottom), Neumann (right,top), identity mapping, N1 = N2 = 40
grid points.

2. Sine solution, Dirichlet (inner radius), Neumann (outer radius), periodic in θ, annulus map-
ping, Ns = 1 smoothing steps (algorithm 2), N1 = 7, N2 = 42 grid points.

3. Sine solution, Dirichlet (left, bottom), Neumann (right,top), X mapping, Ns = 1 smoothing
steps (algorithm 2), N1 = N2 = 20 grid points.

These cases test orthogonal and non-orthogonal mappings, Dirichlet and Neumann boundary con-
ditions and all variations of corner conditions.
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Figure 10: Max-norm errors versus time step for the identity mapping. Left: SOT scheme. Right: FOT scheme.
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Figure 11: Max-norm errors versus time step for the Annulus mapping. Left: SOT scheme. Right: FOT scheme.

Figures 10, 11, and 12 show the relative max-norm errors in the solution as a function of time-
step for the three cases given above. The relative errors are computed relative to the max-norm of
the true solution which is one for the sine solution. The errors are plotted every 10 time steps. In
each case the errors are seen to remain bounded with no exponential blowup that would be a sign
of an instability.

For the X mapping results are not shown for m = 4 since for this case large errors were detected
on the Neumann boundaries where the grid was most skew. This is consistent with the analysis in

26



0 1000 2000 3000 4000 5000 6000 7000

time step

10
-8

10
-6

10
-4

10
-2

10
0

SOT: Max Rel Error, G=X, cfl= 0.40, B=dndn, N
s
=1

0 1000 2000 3000 4000 5000

time step

10
-8

10
-6

10
-4

10
-2

10
0

FOT: Max Rel Error, G=X, cfl= 0.50, B=dndn

Figure 12: Max-norm errors versus time step for the X mapping. Left: SOT scheme. Right: FOT scheme.

Section 5.2, and the determinant condition (63e) for m = 4 which indicates that this CBC condition
can be poorly conditioned on a skewed grid when the mesh spacing is not small enough. Indeed,
the errors on the Neumann boundaries for m = 4 do decrease as the mesh is refined.

7. Conclusions

High-order accurate Hermite schemes for the wave equation on curvilinear grids have been
presented. The first-order in time (FOT) schemes have accuracy 2m − 1 for degree m Hermite
schemes, while the second-order in time (SOT) schemes have accuracy 2m. Compatibility bound-
ary conditions (CBCs) are used to build centered polynomial approximations on the boundary.
The automatic construction of the schemes for Dirichlet and Neumann boundary conditions at ar-
bitrary order of accuracy were given. Similarly the construction of the CBC schemes at corners was
provided. The solvability and conditioning of the matrices resulting from the CBC approximations
were studied. With the current formulation, the conditioning of the matrices associated with the
CBCs is manageable for m up to about 5 corresponding to an order of accuracy of 10 (SOT) or
9 (FOT). Iterative refinement could be used to go to larger values of m. It may also be possible
to reformulate the equations to reduce the condition number. For Cartesian grids with homo-
geneous Dirichlet or Neumann boundary conditions it was shown that the CBCs give polynomial
approximations with odd or even symmetry, respectively, and thus are equivalent to applying odd
or even reflection boundary conditions. Numerical examples in two dimensions demonstrated the
accuracy and stability of the schemes at different orders of accuracy and for a variety of grids,
both orthogonal and non-orthogonal. Some practical considerations in implementing the Hermite
schemes on curvilinear grids were provided in the Appendices.

There are several avenues of research for future work. The schemes can be extended to three
space dimensions. Choosing the CBCs at vertices, where three faces meet, will need to be worked
out and the conditionning of the CBC matrices in three-dimensions is an open question. The
compatibility approach can be extended to treat interfaces between different material domains,
where, for example the wave speeds jump. We will investigate approaches to recover the CFL-one
time-step restriction on curvilinear grids, such as through the use of artificial dissipation or filters.
Improving the conditioning of the CBC matrices for very high-order accurate schemes could be
useful. The extension of general order Hermite schemes to unstructured grids will be considered as
well as the use of the CBC approach to finite element methods. The method as presented can only
handle domains that can be mapped to the unit square. Handling more complex domains would
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require using an overset grid or block-structured approach. This would be an an interesting future
endeavor.

Appendix A. Solvability and conditioning of the CBC matrices on Cartesian grids

In this section a proof of Theorem 1 is given. The CBC matrices M can be formed using a
symbolic software package such as Maple. In the case of Cartesian grids, and m not too large,
explicit forms of the max-norm condition numbers can be found. Numerical values of the condition
numbers on Cartesian grids for the tall-cell ratio γ = ∆x/∆y = 1 can be found in Table 1.

Dirichlet boundary. The Dirichlet CBCs (21) can be row-scaled by a factor

C(α, q) = K∆yα∆x2q, (A.1)

where K is chosen to make the maximum entry (in absolute value) in the row to be one. The
resulting row-scaled equations will only depend on γ = ∆x/∆y. For m = 1 we have an explicit
formula for κ∞(M) ,

κ∞(M) = max(41, 28 + 3γ2)×max(
121

16
, 1 + γ2). (A.2)

Note that κ∞(M) only depends on the tall-cell ratio γ. As is known from other computations, the
CBCs become less well conditioned for large γ. For m = 1 and γ ≤ 1, the condition number is very
modest in size,

κ∞(M) =
4961

16
≈ 310. (A.3)

For m = 2

κ∞(M) = max

(
1819

4
, 371 +

25γ2

2
,
597

2
+

65γ2

4
, 5 + 5γ4 + 10γ2,

1917

16
+

21γ2

2
+

15γ4

4

)
(A.4)

×max

(
3249

256
, 1 + γ2, 1 +

γ2

3
+ γ4

)
.

For m = 2 and γ = 1 the condition number (with row-scaling) is

κ∞(M) =
5909931

1024
≈ 5770. (A.5)

For m > 2 the expressions become quite lengthly and instead we just report the condition numbers
for γ = 1 in Table 1. As m increases the conditions numbers increase quite rapidly. Even with
row-scaling, the condition number for large m is becoming quite large.

Neumann boundary. The CBCs for Neumann boundaries can also be scaled so that the resulting
equations only depend on γ. For m = 1,

κ∞(M) = max

(
125

16
, 1 + γ2,

21

4
+

3γ2

4

)
×max

(
121

16
, 1 + γ2

)
(A.6)

and for γ ≤ 1,

κ∞(M) =
15125

256
≈ 310. (A.7)
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For m = 2,

κ∞(M) = max

(
883

16
,
373

8
+

35γ2

8
, 1 + γ4 + 2γ2,

471

32
+

21γ2

8
+

15γ4

16

)
(A.8)

×max

(
3249

256
, 1 + γ2, 1 +

3γ2

5
+ γ4

)
and for γ ≤ 1,

κ∞(M) ≈ 700. (A.9)

For m > 2 and γ ≤ 1, see the values in Table 1. It is seen that the condition numbers of
the matrices for Neumann boundary conditions is similar to the condition numbers for Dirichlet
boundary conditions.

Dirichlet-Dirichlet corner. For m = 1,

κ∞(M) = max

(
71,

95

2
+

3

γ2
,
95

2
+ 3γ2,

485

16
+

3γ2

4
+

3

4γ2

)
×max

(
121

16
,
1

3
+

1

γ2
,
1

3
+ γ2

)
,

(A.10)

and for γ = 1,

κ∞(M) ≈ 537. (A.11)

The condition number at a corner grows with γ2 and with γ−2. Thus it is advisable to have γ ≈ 1
near a corner.

Neumann-Neumann corner. For m = 1,

κ∞(M) = max

(
121

16
, 1 +

1

3γ2
, 1 +

γ2

3
,
247

64
+

1

4γ2
,
247

64
+

γ2

4
,
585

256
+

γ2

48
+

1

48γ2

)
(A.12)

×max

(
121

16
, 1 +

1

3γ2
, 1 +

γ2

3

)
,

and for γ = 1,

κ∞(M) ≈ 572. (A.13)

Dirichlet-Neumann corner. For m = 1,

κ∞(M) = max

(
43

2
, 1 +

1

γ2
,
115

8
+ γ2,

227

16
+

3

4γ2
,
573

64
+

γ2

4
+

1

16γ2

)
(A.14)

×max

(
121

16
, 1 +

1

γ2
, 1 + γ2

)
,

and for γ = 1,

κ∞(M) ≈ 163. (A.15)

Appendix B. Hermite evolution operators for the FOT and SOT schemes

The basic steps in the Hermite scheme are given in Algorithm 1. The scheme involves an
Hermite interpolant IH , an evolution operator TH and a boundary condition operator BH . In this
section the evolution operators TH for the FOT and SOT schemes are described.
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Appendix B.1. FOT evolution

The FOT scheme stores both the solution u and the velocity v on the primal and dual grids.
The degree of Taylor polynomial for v is taken as one less than that for u. Thus, the degree of
ui(r) is m and 2m+ 1 for ūi(r), while the degree for vi(r) is m− 1 and 2m− 1 for v̄i(r). Consider
the process of evolving the solution on the dual grid (line 7 in Algorithm 1) or on the primal grid

(line 10 in Algorithm 1). Given ūni and v̄ni , the goal is to determine u
n+ 1

2
i and v

n+ 1
2

i . To this end,
the solution is expanded in a Taylor polynomial in space and time

ūni (r, t) =
2m+1∑
l1=0

2m+1∑
l2=0

2m+1∑
β=0

ūi,l1,l2,β R
l1
i Sl2

j T β
n , (B.1a)

v̄ni (r, t) =
2m−1∑
l1=0

2m−1∑
l2=0

2m+1∑
β=0

v̄i,l1,l2,β R
l1
i Sl2

j T β
n , (B.1b)

Ri
def
=

r − ri
∆r

, Sj
def
=

s− sj
∆s

, Tn
def
=

t− tn

∆t
, (B.1c)

for some coefficients ūi,l1,l2,β and v̄i,l1,l2,β. The evolution equations for the FOT scheme enforce the
following constraints

∂α1
x ∂α2

y ∂β
t ∂tu = ∂α1

x ∂α2
y ∂β

t v, αk = 0, 1, . . . , 2m+ 1, β = 0, 1, . . . , 2m+ 1, (B.2a)

∂α1
x ∂α2

y ∂β
t ∂tv = ∂α1

x ∂α2
y ∂β

t (Lu), αk = 0, 1, . . . , 2m− 1, β = 0, 1, . . . , 2m+ 1, (B.2b)

at r = ri, s = sj , and t = tn. The values of the coefficients ūi,l1,l2,β and v̄i,l1,l2,β in (B.1) for s = 0
are determined from the Hermite interpolants for ūni and v̄ni at the current time tn. The values of
the coefficients or s = 1, 2, . . . are found by a recursion derived by enforcing the conditions in (B.2).

Given the coefficients ūi,l1,l2,β and v̄i,l1,l2,β, the coefficients in the solution at time tn+
1
2 are found

by evaluating (B.1) at time tn +∆t/2. This leads to the evolution function given in Algorithm 3.
Recall that LH in Algorithm 3 is the matrix representation of the operator L. In the case of a
Cartesian grid, enforcing (B.2) leads to the recursions

β + 1

∆t
ūi,l1,l2,β+1 = v̄i,l1,l2,β, (B.3a)

β + 1

∆t
v̄i,l1,l2,β+1 = c2

(l1 + 2)(l1 + 1)

∆x2
ūi,l1+2,l2,β + c2

(l2 + 2)(l2 + 1)

∆y2
ūi,l1,l2+2,β, (B.3b)

for β = 0, 1, 2, . . . , 2m+ 1.

Appendix B.2. SOT evolution

The evolution of the SOT scheme is based on the Taylor series expansion of the second divided
difference in time,

u(r, t+ δ)− 2u(r, t) + u(r, t− δ)

δ2
= 2

∞∑
µ=1

1

(2µ)!
δ2µ∂2µ

t u(r, t). (B.4)

Using ∂2µ
t u = Lµµ and setting δ = ∆t/2 leads to

u(r, t+
∆t

2
) = 2u(r, t)− u(r, t− ∆t

2
) + 2

∞∑
µ=1

1

(2µ)!

[
∆t

2

]2µ
Lµu(r, t). (B.5)
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Algorithm 3 FOT Evolution: advance the solution for half a time-step.

1: function [u
n+ 1

2

i , v
n+1/2
i ] =evolveFOT(ūn

i , v̄
n
i )

2: ūi,l1,l2,0 = ūn
i,l1,l2

, l1, l2 = 0, 1, 2, . . . , 2m+ 1
3: v̄i,l1,l2,0 = v̄ni,l1,l2 , l1, l2 = 0, 1, 2, . . . , 2m− 1
4: for β = 0, 1, . . . , 2m+ 1 do

5: ūi,l1,l2,β+1 =
∆t

s+ 1
v̄i,l1,l2,β , l1, l2 = 0, 1, 2, . . . , 2m+ 1

6: w̄i,l1,l2 = ūi,l1,l2,β , l1, l2 = 0, 1, 2, . . . , 2m+ 1

7: v̄i,l1,l2,β+1 =
∆t

s+ 1
(LHw̄i)i,l1,l2,β ▷ See Algorithm 8 for LHw̄i

8: end for

9: u
n+ 1

2 ,l1,l2
i =

2m+2∑
β=0

ūi,l1,l2,β

(1
2

)β

, l1, l2 = 0, 1, 2, . . . ,m+ 1 ▷ Evaluate Taylor series in time

10: v
n+ 1

2

i,l1,l2
=

2m+2∑
β=0

v̄i,l1,l2,β

(1
2

)β

, l1, l2 = 0, 1, 2, . . . ,m− 1 ▷ Evaluate Taylor series in time

11: end function

The SOT evolution equations are derived from taking spatial derivatives of (B.5), leading to the
approximations

∂α1
r1 ∂

α2
r2 u(r, tn+

1
2 ) ≈

2 ∂α1
r1 ∂

α2
r2 u(r, tn)− ∂α1

r1 ∂
α2
r2 u(r, tn−

1
2 ) + 2

m∑
µ=1

1

(2µ)!

[
∆t

2

]2µ
∂α1
r1 ∂

α2
r2 Lµu(r, t), (B.6)

at r = ri and for α1, α2 = 0, 1, 2, . . . ,m. Algorithm 4 gives the SOT evolution function used to

compute the Hermite DOFs u
n+ 1

2
i,l1,l2

based on (B.6).

Algorithm 4 SOT Evolution: advance the solution a half time-step.

1: function u
n+ 1

2

i = evolveSOT(ūn
i , u

n− 1
2

i )

2: u
n+ 1

2

i,l1,l2
= 2 ūn

i,l1,l2
− u

n− 1
2

i,l1,l2
, l1, l2 = 0, 1, 2, . . . ,m

3: w̄i = ūn
i ▷ Holds Lµūn

i

4: for µ = 1, 2, . . . ,m do
5: w̄i = LHw̄i ▷ See Algorithm 8 for LHw̄i

6: u
n+ 1

2

i,l1,l2
= u

n+ 1
2

i,l1,l2
+ 2

1

(2µ)!

[
∆t

2

]2µ
w̄i,l1,l2 , l1, l2 = 0, 1, 2, . . . ,m

7: end for
8: end function

The explicit form of the update on a Cartesian grid is

u
n+ 1

2
i,l1,l2

= 2 ūni,l1,l2 − u
n− 1

2
i,l1,l2

+
2

l1! l2!

∑
µ=1

1

(2µ)!

[c∆t

2

]2µ µ∑
j=0

(
µ

j

)
(2(µ− j) + l1)!

h
2(µ−j)
x

(2j + l2)!

h2jy
ūni,2(µ−j)+l1,2j+l2

, (B.7)

for l1, l2 = 0, 1, . . . ,m.
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Appendix B.2.1. First time-step

The SOT scheme requires two starting values, the solution on the primal grid at t = 0 and the
solution on the dual grid at t = −∆t/2. The solution and it’s spatial derivatives at t = 0 are found

from the initial condition (1b). The solution at t = −∆t/2
def
= δ can be found from a Taylor series

in time,

u(x, t+ δ) = u(x, 0) + δ ∂tu(x, 0) +
δ2

2!
∂2
t u(x, 0) +

δ3

3!
∂3
t u(x, 0) +

δ4

4!
∂4
t u(x, 0) + . . . (B.8)

Given initial conditions,

u(x, 0) = U0(x), (B.9a)

∂tu(x, 0) = U1(x), (B.9b)

the even time-derivatives of u(x, 0) are (assuming here that the body forcing f(x, t) is zero)

∂2q
t u(x, 0) = LqU0(x), q = 0, 1, 2, . . . , (B.10)

where L = c2∆. The odd time-derivatives are

∂2q+1
t u(x, 0) = LqU1(x), q = 0, 1, 2, . . . . (B.11)

The Taylor series (B.8) can also be used to update the spatial derivatives. Algorithm 5 outlines
the first (backward) step. For degree m one should keep 2m+1 terms in the Taylor series (the last
term is the δ2m term). The Algorithm 5 keeps one additional term.

Algorithm 5 First (backward) time-step for the SOT scheme

1: function [u0
i , u

− 1
2

j ] = takeFirstStep

2: Set u0
i from ∂l1

r1∂
l2
r2U0, l1, l2 = 0, 1, . . . ,m, i ∈ P ▷ Initial solution.

3: Set v0i from ∂l1
r1∂

l2
r2U1, l1, l2 = 0, 1, . . . ,m, i ∈ P ▷ Initial time-derivative.

4: ūj = IH(u
0
i ), i ∈ P , j ∈ D ▷ Interpolate to dual grid.

5: v̄j = IH(v
0
i ), i ∈ P , j ∈ D ▷ Interpolate to dual grid.

6: δ = −∆t/2

7: u
− 1

2

j,l1,l2
= ūj,l1,l2 + δ v̄j,l1,l2 , l1, l2 = 0, 1, . . . ,m, j ∈ D

8: for k = 1, 2, . . . ,m do

9: u
− 1

2

j,l1,l2
= u

− 1
2

j,l1,l2
+

δ2k

2k!
(Lk

H ūj)j,l1,l2 +
δ2k+1

(2k + 1)!
(Lk

H v̄j)j,l1,l2 , l1, l2 = 0, 1, . . . ,m, j ∈ D

10: end for
11: end function

Appendix B.3. Choosing the time-step

On Cartesian grids, the time step is chosen from

c∆t

min(∆x,∆y)
= CCFL, (B.12)

where CCFL is the CFL parameter. The SOT schemes with CBCs on Cartesian grids appear to be
stable to CCFL = 1.0 (found experimentally). The FOT scheme on Cartesian grids requires special
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fixes to reach CCFL = 1.0 as described in [6]. On curvilinear grids we estimate the smallest grid
spacing in the r and s coordinate directions from the grid points,

∆xmin = min
i

(
|xi1+1,i2 − xi|, |xi1,i2+1 − xi|

)
, (B.13)

and choose ∆t from

c∆t

∆xmin

= CCFL. (B.14)

On curvilinear grids, the schemes generally have a lower CFL limit than for Cartesian grids (but
as the mesh is refined this limit appears to approach the Cartesian grid stable CFL). For the
computations in this article a choice of CCFL = 0.5 was taken for the FOT scheme and CCFL = 0.4
for the SOT scheme, unless otherwise specified. Numerical experiments suggest that the addition of
some dissipation to either scheme will increase the stable CCFL. An investigation into this behavior
will be left to future work.

Appendix C. Practicalities

This section provides some helpful information for those readers interested in implementing
Hermite schemes.

Appendix C.1. Hermite interpolants

In one space dimension the degree m Taylor polynomial representation of the solution is

ui(r) =
m∑

l1=0

ui,l1 R
l1
i , Ri

def
=

r − ri
∆r

. (C.1)

The degree 2m+ 1 Hermite interpolant given by

ūi+ 1
2
(r) =

2m+1∑
l1=0

ūi+ 1
2
,l1

Rl1
i , (C.2)

is chosen to match the solution and it’s derivatives at points ri and ri+1,

∂α
r ūi+ 1

2
(ri) = ∂α

r ui(ri), α = 0, 1, 2, . . . ,m, (C.3a)

∂α
r ūi+ 1

2
(ri+1) = ∂α

r ui+1(ri+1), α = 0, 1, 2, . . . ,m. (C.3b)

Now

∆rα

α!
∂α
r ui(ri) = ui,α,

∆rα

α!
∂α
r ui+1(ri+1) = ui+1,α, (C.4)

while

∆rα

α!
∂α
r ūi+ 1

2
(r) =

2m+1∑
l1=α

(
l1
α

)
ūi+ 1

2
,l1

Rl1−α
i . (C.5)
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This leads to the interpolation conditions

2m+1∑
l1=α

(
l1
α

)
ūi+ 1

2
,l1

[
− 1

2

]l1−α
= ui,α, (C.6a)

2m+1∑
l1=α

(
l1
α

)
ūi+ 1

2
,l1

[
+

1

2

]l1−α
= ui+1,α. (C.6b)

for α = 0, 1, 2, . . . ,m. Equations (C.6) define a linear system of equations whose solution can be
written as

ūi+ 1
2
= I(1)

H (ui), (C.7)

where I(1)
H is the Hermite interpolation operator in coordinate direction r1. The Hermite interpolant

in two dimensions is defined by repeated application of one-dimensional interpolants, first in the
r1-direction and then in the r2-direction as given in in Algorithm 6.

Algorithm 6 Compute the Hermite interpolant in two dimensions, ūi = IH(ui).

1: function ūi = IH( ui )
2: for l2 = 0, 1, . . . ,m do ▷ Interpolate in r1 direction

3: ūi+ 1
2 ,i2,0:2m+1,l2 = I(1)

H (ui1,i2,0:m+1,l2), i1 = 0, 1, . . . , N1 − 1, i2 = 0, 1, . . . , N2

4: end for
5: for l1 = 0, 1, . . . , 2m+ 1 do ▷ Interpolate in r2 direction

6: ūi1+
1
2 ,i2+

1
2 ,l1,0:2m+1 = I(2)

H (ūi1+
1
2 ,i2,l1,0:m+1), i1 = 0, 1, . . . , N1 − 1, i2 = 0, 1, . . . , N1 − 1

7: end for
8: end function

Appendix C.2. Taylor polynomial coefficients from function evaluations

Algorithm 7 contains a useful procedure that determines approximations to the scaled Taylor
polynomial coefficients (as used by the Hermite schemes) of a known function f(x). This function
can be used for setting up initial conditions, evaluating forcing functions and their derivatives for
boundary conditions (such as in (21)), as well as computing the Taylor polynomial representations
of the curvilinear coefficients of L in (3).

Algorithm 7 finds approximate Taylor coefficients for a function f(x) on a cell with center xi
and width ∆x. The algorithm evaluates the function on a set of q + 1 scaled Chebyshev points on
[xi −∆x/2, xi +∆x/2], forms an interpolant in Newton divided difference form, and then converts
the coefficients of this interpolant into the coefficients of a power series. This procedure is described
in Algorithm for Dual System, in Solution of Vandermonde Systems of Equations, by Åke Björk and
Victor Pereyra [45]. It avoids computing the interpolant from a Vandermonde system, which would
be very ill conditioned. For a Hermite polynomial of degree m we choose q = 2m+ 1 interpolation
intervals.

Appendix C.3. Taylor polynomials for the Laplacian in curvilinear coordinates

The coefficients, aαβ(r), in the Laplacian in curvilinear coordinates in (3), are approximated as
Taylor polynomials of degree 2m+ 1 in each direction,

aαβ
i (r) =

2m+1∑
l1=0

2m+1∑
l2=0

aαβ
i,l1,l2

Rl1
i Sl2

j . (C.8)
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Algorithm 7 Find scaled Taylor coefficients fj , j = 0, 1, . . . , q from function evaluations.

1: function f = getTaylorCoefficients( q, xi, ∆x, f )
2: // Evaluate the function f(x) at q + 1 Chebyshev points on the cell centered at xi with width ∆x
3: for j = 0, 1, 2, . . . , q do
4: zj = − 1

2 cos(πj/q) ▷ Chebyshev points on [− 1
2 ,

1
2 ]

5: fj = f(xi +∆x zj) ▷ Evaluate f on scaled Chebyshev points on [xi −∆x/2, xi +∆x/2]
6: end for
7: for k = 1, 2, . . . , q do
8: for j = q, q − 1, . . . , k do

9: fj =
fj − fj−1

zj − zj−k
▷ Newton divided differences

10: end for
11: end for
12: for k = q − 1, q − 2, . . . , 0 do
13: for j = k, k + 1, . . . , q − 1 do
14: fj = fj − zk fj+1 ▷ Recursion to convert Newton form to Taylor form
15: end for
16: end for
17: end function

Values for aαβ
i,l1,l2

can be conveniently computed making use of the approach outlined in Appendix

C.2 which requires a function to evaluate aαβ
i (r) for different values of r. Consider, for example,

computing the Taylor polynomial approximation to a20(r),

a20(r) = (∂x1r1)
2 + (∂x2r1)

2. (C.9)

Let us suppose that we have a function to compute entries in the Jacobian matrix5

∂x

∂r
=

∂G(r)

∂r
=

[∂xµ
∂rν

]
. (C.10)

The inverse metrics can be found from the inverse of the Jacobian matrix

∂r

∂x
=

[∂x
∂r

]−1
=

[∂rµ
∂xν

]
. (C.11)

Now fit Taylor polynomials to the inverse metrics

[∂rµ
∂xν

]
i
(r) =

2m+1∑
l1=0

2m+1∑
l2=0

[∂rµ
∂xν

]
i,l1,l2

Rl1
i Sl2

j . (C.12)

The coefficients in the Taylor polynomial for a20(r) in (C.9) can then be computed from the
polynomials for the inverse metrics through multiplication and addition of polynomials, truncated
to degree 2m + 1 in each direction. The coefficients a10 and a01 in (3) depend on derivatives of
the inverse metrics and these can be computed using the chain rule and taking derivatives of the
Taylor polynomials.

5If the metric derivatives are not known then one can work directly with G(r) and take derivatives of the Taylor
polynomials to get the entries in the Jacobian matrix.
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Appendix C.4. Applying the wave operator in curvilinear coordinates

Given the Taylor polynomial representations for the curvilinear coefficients aµ,νi (r) applying the
wave operator L to a Hermite representation ūi(r) is straightforward. For example, consider the
computation of w̄ = a20∂2

r ū. We have

∂2
r ūi(r) =

2m+1∑
l1=2

2m+1∑
l2=0

ūi,l1,l2
l1(l1 − 1)

∆r2
Rl1−2

i Sl2
j . (C.13)

Then

a20i (r)∂2
r ūi(r) =

2m+1∑
l′1=0

2m+1∑
l′2=0

a20i,l′1,l′2
R

l′1
i S

l′2
j ×

2m+1∑
l′′1=2

2m+1∑
l′′2=0

ūi,l′′1 ,l′′2
l′′1(l

′′
1 − 1)

∆r2
R

l′′1−2
i S

l′′2
j , (C.14a)

=
2m+1∑
l′1=0

2m+1∑
l′2=0

2m+1∑
l′′1=2

2m+1∑
l′′2=0

a20i,l′1,l′2
ūi,l′′1 ,l′′2

l′′1(l
′′
1 − 1)

∆r2
R

l′1+l′′1−2
i S

l′2+l′′2
j (C.14b)

Setting l′1 + l′′1 − 2 = l1 and l′2 + l′′2 = l2 and l′1 = k1 and l′2 = k2 implies

l′′1 = l1 − k1 + 2, l′′2 = l2 − k2 (C.15)

and thus

a20i (r)∂2
r ūi(r) =

2m+1∑
l1=0

2m+1∑
l2=0

w̄i,l1,l2 R
l1
i Sl2

j , (C.16a)

w̄i,l1,l2 =

l1∑
k1=0

l2∑
k2=0

aαβ
i,k1,k2

ūi,l1−k1+2,l2−k2

(l1 − k1 + 2)(l1 − k1 + 1)

∆r2
(C.16b)

Note that the polynomials in (C.16) have been truncated to degree 2m+1 and that any terms with
an array index out of bounds should be ignored. Algorithm 8 gives the full algorithm to apply L
(with the same caveat that terms with invalid subscripts should be ignored.)
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[8] X. R. Chen, D. Appelö, T. Hagstrom, A hybrid Hermite–discontinuous Galerkin method for
hyperbolic systems with application to Maxwell’s equations, Journal of Computational Physics
257 (2014) 501–520.
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