
High-order Accurate Implicit-Explicit Time-Stepping Schemes for Wave
Equations on Overset Grids

Allison M. Carsona,1, Jeffrey W. Banksa,2, William D. Henshawa,1,˚, Donald W. Schwendemana,1

aDepartment of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract

New implicit and implicit-explicit time-stepping methods for the wave equation in second-order form are
described with application to two and three-dimensional problems discretized on overset grids. The implicit
schemes are single step, three levels in time, and based on the modified equation approach. Second and
fourth-order accurate schemes are developed and they incorporate upwind dissipation for stability on overset
grids. The fully implicit schemes are useful for certain applications such as the WaveHoltz algorithm for
solving Helmholtz problems where very large time-steps are desired. Some wave propagation problems are
geometrically stiff due to localized regions of small grid cells, such as grids needed to resolve fine geometric
features, and for these situations the implicit time-stepping scheme is combined with an explicit scheme: the
implicit scheme is used for component grids containing small cells while the explicit scheme is used on the
other grids such as background Cartesian grids. The resulting partitioned implicit-explicit scheme can be
many times faster than using an explicit scheme everywhere. The accuracy and stability of the schemes are
studied through analysis and numerical computations.
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Nomenclature

ME: Modified Equation

EMEp: Explicit Modified Equation scheme, pth order accurate

IMEp: Implicit Modified Equation scheme, pth order accurate

SPIEp: Spatially Partitioned Implicit Explicit scheme, pth order accurate

SCHEMEp-UW-PC: SCHEMEp + upwind disssipation + predictor corrector

LTS: Local Time Stepping

LIM: Locally Implicit Method

1. Introduction

The wave equation in second-order form is an important model for many applications in science and engi-
neering involving wave propagation. Example applications include acoustics, electromagnetics and elasticity;
such problems are often posed mathematically as partial differential equations with appropriate initial and
boundary conditions. Wave propagation problems are often solved most efficiently using high-order accurate
explicit time-stepping schemes. Explicit schemes can be fast and memory efficient. The time-step for such
schemes is limited by the usual CFL stability condition involving the size of grid cells and the wave speed.
Thus, there are some situations, such as with a locally fine mesh or a locally large wave speed, when an
explicit scheme with a global time-step is inefficient since a small time-step would be required everywhere.
For such situations, we say the problem is geometrically stiff or materially stiff. An example of a geomet-
rically stiff problem is the diffraction of an incident wave from a knife-edge as shown in Figure 1. The
solution of this problem is computed using an overset grid for which there are small grid cells near the tip
of the knife-edge. These small cells force the time-step of an explicit method to be reduced by a factor of
20 from that required by the Cartesian background grid. (More information concerning overset grids and
our numerical schemes for such grids is given later.) There are two common approaches to overcome this
stiffness, local time-stepping (LTS) and locally implicit methods (LIM). LTS methods use a local time-step
dictated by the local time-step restriction. LIM’s use an implicit method on only part of the domain, usually
where the grid cells are smallest.

0. 1.2
Figure 1: Geometrically stiff problem: scattering of a modulated Gaussian plane wave from a knife edge. Left: overset grid for
the geometry showing magnified views of the tip grid which has very small grid cells. Right: contours of |u| computed with the
new SPIE scheme; the tip grid was advanced implicitly while other grids were advanced explicitly resulting in a time-step that
was about 20 times larger than using an explicit scheme on all grids.
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In this article we develop new locally implicit time-stepping schemes for the wave equation in second-
order form on overset grids based on the modified equation (ME) approach. These schemes are high-order
accurate single-step schemes that use three time-levels and a compact spatial stencil. The schemes depend on
one or more parameters that determine the degree of implicitness; the second-order accurate scheme depends
on one parameter while the fourth-order accurate scheme depends on two parameters. For certain ranges of
these parameters the schemes are unconditionally stable in time. A small amount of upwind dissipation is
added to the schemes for stability on overset grids. The upwind dissipation can be added in several ways,
for example, in a fully implicit manner or in a predictor-corrector fashion where the upwinding is added in
a separate explicit step.

Our implicit time-stepping ME scheme, denoted by IME, is combined with a ME-based explicit time-
stepping scheme, denoted by EME, in a spatially partitioned manner. The EME schemes we use have a
compact stencil and have a time-step restriction that is independent of the order of accuracy3. We say that
these compact EME schemes are able to take a CFL-one time-step. This is in contrast to typical linear
multi-step methods where explicit higher-order schemes tend to have smaller time-step restrictions, or to
popular Discontinuous Galerkin (DG) methods where the time-step restriction typically scales as 1{p2P ` 1q

with P being the degree of the polynomial basis [1]. For an overset grid, a locally implicit scheme can be used,
for example, on boundary-fitted component grids that resolve small geometrical features. The EME scheme
can then be used on Cartesian background grids or on curvilinear grids that have similar grid spacings to
the background grids. In this way the time-step for the EME scheme is not restricted by the small grid cells
used to resolve small geometrical features. In typical applications, the majority of the grid points belong to
background Cartesian grids, and the solution on these grid points can be advanced very efficiently with a
CFL-one time-step. This can make the hybrid IME-EME scheme much more efficient than using the EME
scheme everywhere with a small (global) CFL time-step. We refer to this hybrid scheme as a Spatially
Partitioned Implicit-Explicit (SPIE) scheme. Note that the EME scheme is more accurate since ME schemes
are most accurate for the CFL number close to one: unlike method-of-lines schemes, the accuracy of ME
schemes is degraded for small CFL numbers. The implicit matrix formed by the IME schemes is definite,
and it is well suited to a solution by modern Krylov-based methods or multigrid.

Normally there is no benefit in using implicit time-stepping and taking a large (greater than one) global
CFL time-step for wave propagation problems as the accuracy of the solution is usually degraded. However,
there are applications where implicit time-stepping methods for the wave equation using a large CFL number
can be useful. For example, implicit methods for the wave equation are an attractive option for each iteration
step of the WaveHoltz algorithm [2–4] which solves for time periodic (Helmholtz) solutions4. The WaveHoltz
algorithm can solve Helmholtz problems for frequencies anywhere in the spectrum without the need to invert
an indefinite matrix as is common with many approaches. Each iteration of the WaveHoltz algorithm requires
a solution of a wave equation over a given period, and just a few implicit time-steps per period (e.g. 5–10) are
needed which leads to very large CFL numbers on fine grids. This is one of our motivations for developing
stable IME schemes for overset grids.

There is a large literature on ME, LTS, and LIM schemes for the wave equation. Here we provide a brief
synopsis, for further references, see [5, 6], for example. Explicit ME schemes for the wave equation go back,
at least, to the work of Dablain [7] and of Shubin and Bell [8]. Local time-stepping has most often been used
for PDEs that are written as first-order systems in time. LTS has been used for decades with adaptive mesh
refinement (AMR) since the pioneering work of Berger and Oliger [9]. Local time-stepping has also been
developed, for example, for Runge-Kutta time-stepping [5, 6, 10], leap-frog time-stepping [11], and arbitrary
high-order ADER schemes [1]. Of note is the ME-based LTS method for the wave equation of Diaz and
Grote [12], where it was found necessary to have a small overlap of one or two cells between the coarse and
fine cells in order to retain the time-step dictated by the coarse mesh. Also of note is the locally time-stepped
Runge-Kutta finite difference scheme of Liu, Li, and Hu [10] for the wave equation on block-structured grids.

3Many EME schemes take powers of an matrix operator (leading to a wider stencil) and the time-step restriction depends
on the order of accuracy.

4Note that the dispersion errors due to the large CFL time-step can be eliminated by an adjustment to the forcing frequency.
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Another reason for using local time-stepping is to couple two difference schemes together. For example,
Beznsov and Appelö [13] use local time-stepping for the wave equation to couple a DG scheme (which has
a small time-step) with an Hermite scheme (which has a CFL-one time-step). The DG scheme is used on
boundary-fitted grids of an overset grid for accurate treatment of the boundary conditions.

Compact implicit difference approximations lead to globally implicit systems (although sometimes with
a time-step restriction) and these have been used for wave equations by a number of authors [14–16]. To
overcome the cost of the global implicit solve, it is common to use locally one-dimensional approximate
factorizations such as the alternating-direction-implicit (ADI) scheme [17, 18]. A variety of locally implicit
methods for wave equations have been developed, for example [19–22]. For some formulations care is required
in coupling the implicit and explicit schemes to avoid an order of accuracy reduction in time. Of particular
note is the fourth-order accurate locally implicit method for the wave equation of Chabassier and Imperi-
ale [21]. They use a Finite Element Method (FEM) discretization (with mass lumping to form a diagonal
mass matrix) and a mortar element method with Lagrange multipliers to couple the implicit and explicit
methods. The implicit ME scheme in [21] is similar to our implicit scheme except that we use finite differ-
ence approximations and a more compact approximation (which leads to different stability restrictions). Our
approach uses a simple coupling between implicit and explicit regions based on overset grid interpolation.
The price for this simpler coupling is that upwind dissipation is needed to ensure stability.

We have been developing high-order accurate algorithms for a variety of wave propagation problems on
overset grids. These include the solution to Maxwell’s equations of electromagnetics for linear and nonlinear
dispersive materials [23–27], the solution of linear and non-linear compressible elasticity [28, 29] and the
solution of incompressible elasticity [30]. A fourth-order accurate ME scheme for Maxwell’s equations in
second-order form on overset grids was developed in [31]. Extensions of the implicit and implicit-explicit
time-stepping methods developed in this article will be very useful for these other applications, both to treat
geometric stiffness and for solving Helmholtz problems using the WaveHoltz algorithm.

The work presented in the remaining sections of this article are organized as follows. Explicit and implicit
ME schemes for the wave equation are introduced in Section 2, which also serves to establish some notation.
Details of the second and fourth-order accurate IME schemes for Cartesian grids are given in Section 3 where
a von Neumann stability analysis is also performed. Methods of upwind dissipation for IME schemes are
described in Section 4, and this is followed in Section 5 by a formulation and a GKS stability analysis of our
new SPIE schemes. Section 6 discusses the implementation of the new ME schemes for overset grids, and
Section 7 provides results of a matrix stability analysis the ME schemes for one-dimensional overset grids.
Numerical results are discussed in Section 8 and concluding remarks are offered in Section 9.

2. Three-level explicit and implicit ME schemes for the wave equation

We are interested in solving an initial-boundary-value (IBVP) problem for the wave equation in second-
order form for a function upx, tq on a domain Ω, with boundary Γ, in nd space dimensions,

B2
t u “ Lu, x P Ω, t ą 0, (1a)

upx, 0q “ u0pxq, x P Ω, (1b)

Btupx, 0q “ u1pxq, x P Ω, (1c)

Bupx, tq “ gpx, tq, x P Γ, t ą 0. (1d)

Here, x “ rx1, ..., xnd
sT P Rnd is the vector of spatial coordinates, t is time, and L is the spatial part of the

wave operator,

L def
“ c2∆u, ∆

def
“

nd
ÿ

d“1

B2
xd
, (2)

with wave speed c ą 0. The initial conditions on u and Btu are specified by the given functions u0pxq and
u1pxq, respectively, and the boundary conditions, denoted by the boundary condition operator B, may be of
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Dirichlet, Neumann, or Robin type with given boundary data gpx, tq.

We begin with a description of the three-level ME schemes that ignores the specifics of the spatial
discretizations. Details of the grids and spatial discretization are left to later sections. The explicit and
implicit ME schemes are both based on the standard second-order accurate central difference approximation
to the second time-derivative of u,

D`tD´t u “
upx, t ` ∆tq ´ 2upx, tq ` upx, t ´ ∆tq

∆t2
, (3)

where ∆t is the time-step and D`t and D´t are forward and backward divided difference operators in time
given by

D`t upx, tq
def
“

upx, t ` ∆tq ´ upx, tq

∆t
, D´t upx, tq

def
“

upx, tq ´ upx, t ´ ∆tq

∆t
, (4)

respectively. Expanding the terms in (3) using Taylor series gives the following expansion,

D`tD´t u “ B2
t u `

∆t2

12
B4
t u `

∆t4

360
B6
t u ` ¨ ¨ ¨ . (5)

Even time derivatives on the right-hand side of (5) are replaced by space derivatives using the governing
equation (1a) to give

D`tD´t u “ Lu `
∆t2

12
L2u `

∆t4

360
L3u ` ¨ ¨ ¨ . (6)

To form a pth order accurate in time scheme, the expansion (6) is truncated to p{2 terms, and the spatial
operators in the resulting truncated expansion are discretized with a time-weighted average of three time
levels. For example, second-order accurate explicit or implicit three-level ME schemes take the form

D`tD´tupx, tq “ L2,h

´

α2upx, t ` ∆tq ` β2upx, tq ` γ2upx, t ´ ∆tq
¯

, (7)

where L2,h is a second-order accurate approximation of L on a grid with representative grid spacing h. The
coefficients pα2, β2, γ2q are the weights in the time-weighted average of upx, tq. The fourth-order accurate
scheme has the form

D`tD´tupx, tq “ L4,h

´

α2upx, t ` ∆tq ` β2upx, tq ` γ2upx, t ´ ∆tq
¯

´ ∆t2L2
2,h

´

α4upx, t ` ∆tq ` β4upx, tq ` γ4upx, t ´ ∆tq
¯

, (8)

where L4,h is a fourth-order accurate approximation of L and pα4, β4, γ4q are coefficients involved in the
time-average of the correction term. Higher-order accurate schemes for p “ 6, 8, . . . can be defined in a
similar way but for this article we only consider schemes for p “ 2 and 4. The explicit ME schemes we use
have α2m “ γ2m “ 0 and β2m ‰ 0 for m “ 1 and 2, while the implicit schemes have α2m ‰ 0 for m “ 1 or 2.

Truncation error analysis can be used to determine the constraints on the parameters α2m, β2m and γ2m
for pth order accuracy. The truncation error of the p “ 2 scheme in (7), denoted by τ2px, tq, is

τ2px, tq “
`

1 ´ pα2 ` β2 ` γ2q
˘

Lu ´ ∆t
`

α2 ´ γ2
˘

BtLu ` Op∆t2 ` h2q. (9)

For second-order accuracy in ∆t and h we take

α2 ` β2 ` γ2 “ 1, (10a)

α2 ´ γ2 “ 0. (10b)
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These two conditions involving the three parameters pα2, β2, γ2q give a single-parameter family of second-
order accurate schemes discussed further in Section 3. Note that the condition α2 “ γ2 implies that the
schemes are symmetric in time which implies the schemes are time reversible. A similar analysis of the p “ 4
scheme in (8) leads to the conditions

α2 ` β2 ` γ2 “ 1, (11a)

α2 ´ γ2 “ 0, (11b)

α4 ´ γ4 “ 0, (11c)

1

2
pα2 ` γ2q ´ pα4 ` γ4q ´ β4 “

1

12
. (11d)

The four constraints in (11) involving the six parameters pα2m, β2m, γ2mq, m “ 1, 2, implies a two-parameter
family of fourth-order accurate schemes as discussed further in Section 3. Note that these p “ 4 schemes are
also symmetric in time. Choices of the parameters that lead to stable schemes for p “ 2 and 4 are discussed
in Section 3.2.

3. Implicit modified equation (IME) schemes on Cartesian grids

In order to analyze the proposed IME schemes in more detail we introduce a spatial approximation for
Cartesian grids in Section 3.1. This allows us to show the form of the fully discrete schemes and to perform
a von Neumann stability analysis in Section 3.2.

3.1. Spatial approximation on Cartesian grids

Let the domain Ω “ r0, 2πsnd be a box in nd dimensions discretized with a Cartesian grid with Nd grid
points in each direction. Denote the grid points as

xj “ rj1h1, ..., jnd
hnd

sT (12)

for multi-index j P Znd and grid spacings hd “ 2π{Nd. Let U
n
j « upxj, t

nq be elements of a grid function at
time tn “ n∆t. Define the usual divided difference operators to be

D`xd
Un
j

def
“

Un
j`ed

´ Un
j

hd
, D´xd

Un
j

def
“

Un
j ´ Un

j´ed

hd
, D0xd

Un
j

def
“

Un
j`ed

´ Un
j´ed

2hd
, (13)

where ed P Rnd is the unit vector in direction d (e.g. e2 “ r0, 1, 0s).
The compact pth order accurate discretization of the operator L can be written in the form

Lp,h
def
“ c2

p{2´1
ÿ

m“0

κm

«

nd
ÿ

d“1

h2m
d pD`xd

D´xd
qm`1

ff

. (14)

where, for example, κ0 “ 1, κ1 “ ´1{12, κ2 “ 1{90 and κ3 “ ´1{560. The compact second-order accurate
approximation to L2 is just the square of the second-order accurate approximation L2,h

L2
2,h “ L2,h L2,h. (15)

Although not used here, note that the compact fourth-order accurate approximation to L2 is not the square
of L4,h as pL4,hq2 has a wider stencil than is needed [32].

Given the accuracy requirements (10) we write the fully discrete second-order accurate ME scheme
(denoted by IME2) in terms of a single free parameter α2,

D`tD´tU
n
j “ L2,h

´

α2 U
n`1
j ` p1 ´ 2α2qUn

j ` α2 U
n´1
j

¯

. (16)
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Note that larger values of α2 correspond to schemes that are more implicit with α2 “ 0 being the explicit
EME2 scheme. Similarly the fully discrete fourth-order accurate ME scheme (denoted by IME4) involves
two two free parameters α2 and α4,

D`tD´tU
n
j “ L4,h

´

α2 U
n`1
j ` p1 ´ 2α2qUn

j ` α2 U
n´1
j

¯

´ ∆t2L2
2,h

´

α4 U
n`1
j ` pα2 ´ 2α4 ´

1

12
qUn

j ` α4 U
n´1
j

¯

. (17)

Larger values of α2 and α4 correspond to schemes that are more implicit with α2 “ α4 “ 0 being the explicit
EME4 scheme.

3.2. Stability analysis of the implicit modified equation (IME) schemes

The stability of the IME schemes (16) and (17) is now studied using von Neumann analysis, assuming
solutions that are periodic in space. Von Neumann analysis expands the solutions in a Fourier series and
determines conditions so that all Fourier modes remain stable. There are numerous definitions for stability,
but for our purposes here we make the following definition:

Definition 1 (Stability). A numerical scheme for the wave equation is stable if there are no Fourier modes
with non-zero wave-number, k ‰ 0, whose magnitude grow in time. For the zero wave-number, k “ 0, case
the linear in time mode given by u “ c0 ` c1t for constants c0 and c1, is permitted since this is an exact
solution to the wave equation.

The explicit ME schemes (with α2 “ α4 “ 0) are known to be CFL-one stable (at least for p “ 2, 4, 6),
meaning stable for

c2∆t2
nd
ÿ

d“1

1

h2
d

ă 1. (18)

For implicit ME schemes we are generally interested in unconditional stability, that is stability for any
∆t ą 0. The constraint on α2 for unconditional (von Neumann) stability of the second-order accurate IME2
scheme is summarized by the following theorem.

Theorem 1 (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic domain pro-
vided

α2 ě
1

4
. (19)

The constraints on α2 and α4 for unconditional stability of the fourth-order accurate IME4 scheme are
summarized by the following theorem.

Theorem 2 (IME4 Stability). The IME4 scheme (17) is unconditionally stable on a periodic domain pro-
vided

α2 ě
1

12
, (20a)

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9 p 1

4 ´ α2q2, when 1
12 ď α2 ď 1

4 .
(20b)

The proofs of Theorems 1 and 2 are given in Appendix A.1 and Appendix A.2, respectively.

4. Upwind dissipation and implicit modified equation (IME-UW) schemes

The EME and IME schemes described in previous sections have no dissipation and are neutrally stable.
As a result, perturbations to the schemes, such as with variable coefficients or when the schemes are applied

8



on overset grids may lead to instabilities. For single curvilinear grids, stable schemes can be defined using
special discretizations such as summation by parts (SBP) [33–37] methods or the schemes described in [31].
Overset grids are a greater challenge and in this case we add dissipation for stability. Upwind dissipation
for the wave equation in second-order form was first developed in [38] and applied to Maxwell’s equations
in [23]. An optimized version of the upwind dissipation was developed in [27] and it is this optimized version
that we use here as a template for the IME scheme.

We first consider upwind dissipation for the explicit ME scheme to establish our basic approach and to
introduce some notation. For the explicit scheme, dissipation is added in a predictor-corrector fashion,

U
p0q

j “ 2Un
j ´ Un´1

j ` ∆t2 Lp U
n
j , (21a)

Un`1
j “ U

p0q

j ´ νp ∆t2 Qp

«

U
p0q

j ´ Un´1
j

2∆t

ff

, (21b)

where Lp denotes the (full) spatial operator for the pth-order accurate scheme, νp is an upwind dissipation
parameter, and Qp is a dissipation operator, which on a Cartesian grid takes the form

Qp
def
“

nd
ÿ

d“1

c

hd
r´∆`xd

∆´xd
s
p{2`1

, (22)

where ∆˘xd
are undivided difference operators corresponding to the divided difference operators defined

in (13). Note that the dissipation operator Qp has a stencil of width p ` 3 compared to the stencil width of
p ` 1 for Lp. The wider stencil for the dissipation reflects the upwind character of the operator [38]. Also
note that the addition of the upwind dissipation does not change the order of accuracy of the scheme.

The dissipation operator Qp in (21b) acts on an approximation of Btupxj, t
nq. The treatment of this

approximation in the predictor-corrector scheme in (21) ensures that the scheme, with dissipation, remains
explicit and pth-order accurate. For implicit ME schemes, there is more flexibility in the treatment of this
approximation. Two approaches are described in the next subsections.

4.1. Monolithic upwind dissipation for IME schemes (IME-UW)

Upwind dissipation for the implicit ME schemes can be added directly into the single step update (denoted
as the IME-UW scheme) as

D`tD´tU
n
j “ LαppUn`1

j , Un
j , U

n´1
j q ´ νp Qp

«

Un`1
j ´ Un´1

j

2∆t

ff

. (23)

Here Lαp denotes the spatial part of the IME scheme as given in (16) and (17) for some choice of the
parameters α2 and α4. A von Neumann stability analysis for a Cartesian grid leads to the following result.

Theorem 3. The IME-UW schemes (23) for p “ 2, 4 on a periodic Cartesian grid are unconditionally
stable for any νp ą 0 provided α2 satisfies the conditions of Theorem 1, for p “ 2, or α2 and α4 satisfy the
conditions for Theorem 2 for p “ 4.

The proof of this theorem is given in Appendix A.3. The monolithic upwind dissipation allows for any
νp ą 0 and there are various possible strategies for choosing this value [? ].

4.2. Predictor-corrector upwind dissipation for IME schemes (IME-UW-PC)

One disadvantage of the upwind scheme (23) is that the dissipation operator changes the implicit matrix,
increasing the stencil size. This may increase the cost of the implicit solve and be undesirable, if for example,
one wants to use an existing multigrid solver not designed for this special matrix. Dissipation can be added
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to the IME scheme is a separate explicit correction step as in (21). Allowing for for multiple corrections
leads to the implicit-predictor explicit-corrector upwind scheme (IME-UW-PC)

U
p0q

j ´ 2Un
j ` Un´1

j

∆t2
“ Lαp pU

p0q

j , Un
j , U

n´1
j q, (24a)

U
pkq

j “ U
pk´1q

j ´ νp ∆t2 Qp

«

U
pk´1q

j ´ Un´1
j

2∆t

ff

, k “ 1, 2, . . . , nu, (24b)

Un`1
j “ U

pnuq

j . (24c)

where nu denotes the number of upwind correction steps. The sequence of corrections in (24) can be combined
and written succinctly as

Un`1
j “ Rnu

p U
p0q

j ` pI ´ Rnu
p qUn´1

j , (25)

where

Rp
def
“ I ´

νp∆t

2
Qp. (26)

The conditions on νp for stability are specified in the following theorem. The theorem covers the cases of
using an implicit or an explicit ME predictor.

Theorem 4. The upwind predictor-corrector scheme (24) is stable on the periodic domain provided the
non-dissipative predictor scheme (explicit or implicit) is stable and provided

0 ď νp ă
σnu

2p`1
řnd

d“1 λxd

. (27)

where σnu
“ 2 for nu even and σnu

“ 1 for nu odd, and where λxd
is the CFL parameter in coordinate

direction d,

λxd

def
“

c∆t

hd
. (28)

The proof of Theorem 4 is given in Appendix A.4. In practice a reasonable choice might be

νp “
sf σnu

2p`1
řnd

d“1 λxd

, (29)

where sf P p0, 1q is a safety factor.
Note from (27) that the coefficient of dissipation, νp, decreases as the CFL parameter increases, and thus

less dissipation is added as the CFL number increases. Thus, for large CFL it may become necessary to use
more than one correction step.

5. Spatially partitioned implicit-explicit (SPIE) ME schemes

The IME and EME schemes can be combined in a spatially partitioned manner. For overset grids, the
IME scheme is used on certain components grids while the EME scheme is applied on all other component
grids. A typical strategy is to employ the EME scheme on background Cartesian grids and any curvilinear
grids with grids spacings close to a nominal Cartesian value, and then use the IME scheme on any curvilinear
component grids that have a minimum grid spacing that is relatively small as compared to the nominal value.
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5.1. Formulation of the SPIE scheme

Let Ge denote the set of grids that use explicit time-stepping (e.g. Cartesian grids), and let Gi denote
the set of grids that use implicit time-stepping (e.g. curvilinear grids). The SPIE algorithm consists of the
following three stages:

Stage 1. Update explicit grids,

U
p0q

g, j ´ 2Un
g, j ` Un´1

g, j

∆t2
“ Lp U

n
g, j, g P Ge, (30a)

Stage 2. Update implicit grids, interpolating from the solution on explicit grids from Stage 1,

U
p0q

g, j ´ 2Un
g, j ` Un´1

g, j

∆t2
“ Lαp pU

p0q

g, j , U
n
g, j, U

n´1
g, j q, g P Gi (30b)

Stage 3. Add dissipation to all grids. For example, if all grids use a predictor-corrector upwind formulation,
then use

Un`1
g, j “ U

p0q

g, j ` νp ∆t2 Qp

«

U
p0q

g, j ´ Un´1
g, j

2∆t

ff

. g P Gi Y Ge. (30c)

Multiple upwind correction steps can also be used as discussed in Section 4.2.

5.2. GKS stability analysis of a model problem for the SPIE scheme

This section investigates the stability of the SPIE scheme for a one-dimensional overset grid. Normal
mode (GKS) analysis [39, 40] is used to show that the second-order accurate SPIE scheme is stable when
solving the wave equation on an overset grid for a one-dimensional infinite domain. Matrix stability analysis
on a finite domain is presented later in Section 7 and the result of the matrix analysis supports the conclusions
of the GKS analysis discussed in this section.

xL,´3

UL,´3

xL,´2

UL,´2

xL,´1

UL,´1

xL,0

UL,0

. . .

xR,0

UR,0

xR,1

UR,1

xR,2

UR,2

xR,3

UR,3

. . .

Figure 2: One-dimensional overset grid used to assess the stability of the SPIE scheme. The explicit scheme is used on the left
grid and the implicit scheme is used on the right. Interpolation points are marked as circles.

Consider the one-dimensional overlapping grid for Ω “ p´8,8q shown in Figure 2. Let xL,j “ pj ` 1qh
and xR,j “ jh denote the grid points for the left and right grids, respectively. Let Us,j , for s “ L,R, denote
the discrete solutions on the two grids. The grids overlap by a distance h and the solution is interpolated
at the interpolation points shown in Figure 2. The second-order accurate SPIE scheme is used. The explicit
(EME2) scheme is applied on the left grid and the implicit (IME2) scheme is applied on the right grid. The
discrete equations are

D`tD´tU
n
L,j “ c2D`xD´xU

n
L,j , j ă 0, (31a)

D`tD´tU
n
R,j “ c2D`xD´x

“

α2 U
n`1
R,j ` p1 ´ 2α2qUn

R,j ` α2 U
n´1
R,j

‰

, j ą 0, (31b)

|Un
L,j | ă 8, j Ñ ´8, (31c)

|Un
R,j | ă 8, j Ñ 8, (31d)

Un
L,0 “ Un

R,1, (31e)
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Un
R,0 “ Un

L,´1, (31f)

where we have assumed that the solution is bounded as |j| Ñ 8. Each individual scheme is assumed to be
stable and so we take λ “ c∆t{h ă 1 and α2 ě 0. Note that the IME2 scheme is unconditionally stable for
α2 ě 1{4, but α2 ě 0 is sufficient when λ ă 1.

Before proceeding with the stability analysis, it is useful to first state the following lemma related to the
stability of the EME2 and IME2 schemes for the Cauchy problem.

Lemma 5.1. Suppose a is a root of quadratic equation,

a2 ´ 2b a ` 1 “ 0, (32a)

where b is defined in terms of some κ P C by

b
def
“

1 ` p 1
2 ´ α2qλ2 pκ ´ 2 ` κ´1q

1 ´ α2 λ2 pκ ´ 2 ` κ´1q
. (32b)

Then, |κ| “ 1 implies |a| “ 1, when (i) λ ă 1 and α2 ě 0 or when (ii) λ ą 0 and α2 ě 1{4.

The proof of Lemma 5.1 is given in Appendix A.5.

We are now ready to prove the main theorem of this section.

Theorem 5. The SPIE scheme in (31), for the one-dimensional infinite domain overset grid, has no unstable
solutions provided λ ă 1 and α2 ě 0.

Proof. We look for unstable mode solutions of the form

Un
L,j “ anκj

L, (33a)

Un
R,j “ anκj

R, (33b)

for some a P C with |a| ą 1. Note that the same amplification factor a must appear in both the left and right
grid functions in order to match the interpolation equations (31e) and (31f). Substituting the ansatz (33)
into (31a) and (31b) implies,

a1 ´ 2a ` a´1 “ λ2pκL ´ 2 ` κ´1
L q, (34a)

a1 ´ 2a ` a´1 “ λ2pκR ´ 2 ` κ´1
R q

`

α2a ` p1 ´ 2α2q ` α2a
´1

˘

. (34b)

The equations (34) can be written as quadratics for κs,

κ2
s ´ 2bsκs ` 1 “ 0, (35a)

for some bs, s “ L,R, with roots denoted by κs,˘. The general solutions for the left and right sides then
take the form

Un
L,j “ anpc`κ

j
L` ` c´κ

´j
L`q, (36a)

Un
R,j “ anpd`κ

j
R` ` d´κ

´j
R`q, (36b)

where c˘ and d˘ are constants. Note that both equations in (34) are of the form (32) of Lemma 5.1. Since
we have assumed |a| ą 1, it follows from Lemma 5.1 that the roots κs,˘ cannot have magnitude equal to
one. Since the product of the roots κs,˘ is one, we can therefore, without loss of generality, take |κs,`| ă 1,
s “ L,R.

The boundedness conditions (31c) and (31d) at infinity imply c` “ 0 and d´ “ 0, reducing the solutions
to

Un
L,j “ anc´κ

´j
L`, (37a)
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Un
R,j “ and`κ

j
R`. (37b)

Applying the interpolation conditions (31e) and (31f) gives

c´ “ d`κR`, (38a)

d` “ c´κL`, (38b)

which implies, assuming c´ ‰ 0 and d` ‰ 0, that

κL`κR` “ 1. (39)

This last equation cannot hold since |κL`κR`| ă 1. Therefore, only the trivial solution remains, thus yielding
no unstable solutions with |a| ą 1.

6. Overset grids, implicit first step, and implicit solvers

The new ME schemes have been implemented for complex geometry using overset grids, which are also
known as composite overlapping grids or Chimera grids. As shown in Figure 3, an overset grid, denoted as G,
consists of a set of component grids tGgu, g “ 1, . . . ,N , that cover the entire domain Ω. Solutions on the
component grids are matched by interpolation [41]. Overset grids enable the use of efficient finite difference
schemes on structured grids, while simultaneously treating complex geometry with high-order accuracy up
to and including boundaries. Each component grid, Gg, is a logically rectangular, curvilinear grid defined
by a smooth mapping from a unit cube in nd dimensions (called the parameter space with coordinates r) to
physical space x,

x “ Ggprq, r P r0, 1snd , x P Rnd . (40)

All grid points in G are classified as discretization, interpolation or unused points [41]. The overlapping grid
generator Ogen [42] from the Overture framework is used to construct the overlapping grid information.

G1

G2

G1

interpolation
ghost
unused

G2

Figure 3: Left: composite of a background grid (G1, blue) and a boundary-fitted grid (G2, green) in physical space for the
domain defined by the interior of the red boundary. The grid points on G1 with green dots interpolate from G2 and the grid
points on G2 with blue dots interpolate from G1. Middle: Plot of G1 showing interpolation points, ghost points (grid points
which exist outside the physical boundary), and unused points (grid points which do not affect the computation). Right: The
green boundary fitted grid, G2, is mapped to a unit square. The plot shows interpolation points and ghost points.

6.1. Discrete approximations on curvilinear grids

Approximations to derivatives on a curvilinear grid can be formed using the mapping method. Given
a mapping x “ Ggprq and its metric derivatives, Brℓ{Bxm, ℓ,m “ 1, . . . , nd, the derivatives of a function
upxq “ Uprq are first written in parameter space using the chain rule, for example,

Bu

Bxm
“

nd
ÿ

ℓ“1

Brℓ
Bxm

BU

Brℓ
. (41)
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Derivatives of U with respect to rℓ are then approximated with standard finite differences. Let ri denote
grid points on the unit cube, where ik “ 0, 1, . . . , Nk. Let ∆rk “ 1{Nk denote the grid spacing on the unit
cube with ri “ pi1∆r1, i2∆r2, i3∆r3q. Let Ui « Upriq and define the difference operators,

D`rℓUi
def
“

Ui`eℓ
´ Ui

∆rℓ
, D´rℓUi

def
“

Ui ´ Ui´eℓ

∆rℓ
, D0rℓUi

def
“

Ui`eℓ
´ Ui´eℓ

2∆rℓ
, (42)

where eℓ is the unit vector in direction ℓ. Second-order accurate approximations to the first derivatives, for
example, are

Dxm,hUi
def
“

nd
ÿ

ℓ“1

Brℓ
Bxm

ˇ

ˇ

ˇ

ˇ

i

D0,rℓUi, (43)

where we assume the metric terms Brℓ{Bxm are known at grid points from the mapping. We do not, however,
assume the second derivatives of the mapping are known (to avoid the extra storage) and these are computed
using finite differences of the metrics. Using the chain rule, the second derivatives are

B2u

BxmBxn
“

nd
ÿ

k“1

nd
ÿ

l“1

Brk
Bxm

Brl
Bxn

B2U

BrkBrl
`

nd
ÿ

k“1

#

nd
ÿ

l“1

Brl
Bxn

B

Brl

Brk
Bxm

+

BU

Brk
. (44)

The second derivatives are approximated to second-order accuracy using approximations such as

B2U

BrkBrl

ˇ

ˇ

ˇ

ˇ

ri

« D`rkD´rlUi, for k “ l, (45)

B2U

BrkBrl

ˇ

ˇ

ˇ

ˇ

ri

« D0rkD0rlUi, for k ‰ l, (46)

B

Brl

ˆ

Brk
Bxm

˙ˇ

ˇ

ˇ

ˇ

ri

« D0rl

ˆ

Brk
Bxm

ˇ

ˇ

ˇ

ˇ

i

˙

. (47)

Fourth and higher-order accurate approximations are straightforward to form using similar techniques.

6.2. Boundary conditions and upwind dissipation

Careful attention to the discrete boundary conditions is important for accuracy and stability, especially
for the wave equation which has no natural dissipation. We use compatibility boundary conditions (CBCs)
which are generally more accurate and stable than one-sided approximations [32]. A simple CBC uses the
governing equation on the boundary. More generally, CBCs for the case of the wave equation are formed by
taking even time-derivatives of the boundary condition and then using the governing equation to replace B2

t

by L. For flat boundaries with homogeneous Dirichlet or Neumann boundary conditions CBCs lead to odd
or even reflection conditions, respectively. For more details on CBCs see [31, 32] for example.

The upwind dissipation operator Qp was introduced in Section 4 and defined in (22) for the case of a
Cartesian grid. More generally for a curvilinear grid the upwind dissipation operator is taken as

Qp “

nd
ÿ

ℓ“1

c }∇xrℓ}

∆rℓ

`

´ ∆`rℓ∆´rℓ

˘p{2`1
, (48a)

where

}∇xrℓ}
2 “

nd
ÿ

m“1

„

Brℓ
Bxm

ȷ2

. (48b)

Here, ∆˘rℓ are undivided difference operators in the ℓ coordinate direction of the parameter space r corre-
sponding to the divided difference operators defined in (42).
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6.3. Implicit first time-step

Implicit three-level ME schemes require two time levels to initiate the time stepping. The solution at
t “ 0 is found directly from the initial condition (1b). The solution at the first time-step t “ ∆t could be
found from a Taylor series in time using both initial conditions (1b), and (1c), together with the governing
equation (1a). It would be convienent to use an explicit version of this Taylor series approximation to obtain
the solution at the first time-step; formally this would not change the stability of the scheme. In practice,
however, very large errors can be introduced in the first explicit time-step at t “ ∆t when the CFL number
is large, often rendering the full computation useless. Thus the first-time step should be taken implicitly
when the CFL number is large. Further, it would be convenient if this implicit first time-step utilized the
same implicit matrix as subsequent time steps of the full three-level scheme. In this section we show how
this can be accomplished.

6.3.1. Implicit first time-step: second-order accuracy

Consider the second-order accurate implicit IME2 scheme, re-written here for clarity,

Un`1
i ´ 2Un

i ` Un´1
i

∆t2
“ L2,h

”

α2U
n`1
i ` β2U

n
i ` α2U

n´1
i

ı

, (49)

which has the implicit operator

A2
def
“ I ´ α2∆t2L2,h. (50)

Given the initial conditions,

upx, 0q “ u0pxq, (51a)

Btupx, 0q “ u1pxq, (51b)

approximate (51b) to second-order accuracy using

D0tU
n
i “

Un`1
i ´ Un´1

i

2∆t
“ u1,i, (52)

with n “ 0. Solving for Un´1
i gives

Un´1
i “ Un`1

i ´ p2∆tqu1,i. (53)

Substituting (53) into (49) and dividing by 2 gives the following implicit scheme for the first step (n “ 0),

Un`1
i ´ Un

i ´ ∆tu1,i

∆t2
“ L2,h

”

α2U
n`1
i `

1

2
β2U

n
i ´ α2∆t u1,i

ı

. (54)

This gives the following update for the first time-step (n “ 0)

A2U
n`1
i “ Un

i ` ∆t u1,i ` ∆t2L2,h

”1

2
β2U

n
i ´ α2∆t u1,i

ı

, (55)

that uses the same implicit operator A2 as the later time steps.

6.3.2. Implicit first time-step: fourth-order accuracy

Consider the fourth-order accurate implicit IME4 scheme, re-written here for clarity,

Un`1
i ´ 2Un

i ` Un´1
i

∆t2
“ L4,h

”

α2U
n`1
i ` β2U

n
i ` α2U

n´1
i

ı

´ ∆t2L2
2,h

”

α4U
n`1
i ` β4U

n
i ` α4U

n´1
i

ı

. (56)
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Scheme (56) has the implicit operator

A4
def
“ I ´ α2∆t2L4,h ` α4∆t4L2

2,h. (57)

To approximate the second initial condition (51b) to fourth-order accuracy, we use

Btu “ D0tu ´
∆t2

6
B3
t u ` Op∆t4q. (58)

To treat the B3
t u term in (58), take the first time derivative of the governing equation and write it in the

form

B3
t u “ B2

t pBtuq “ LpBtuq. (59)

Using this expression for B3
t u in (58) gives the approximation

D0tU
n
i ´

∆t2

6
L2,hu1,i “ u1,i, pn “ 0q. (60)

Solving (60) for Un´1
i gives

Un´1
i “ Un`1

i ´ p2∆tqu1,i ´
∆t3

3
L2,hu1,i, (61a)

“ Un`1
i ´ Wi, (61b)

where

Wi
def
“ p2∆tqu1,i `

∆t3

3
L2,hu1,i. (61c)

Substituting (61b) into (56) and dividing by 2 gives the following fourth-order accurate implicit scheme for
the first step (n “ 0),

Un`1
i ´ Un

i ´ 1
2Wi

∆t2
“ L4,h

”

α2U
n`1
i `

1

2
β2U

n
i ´

1

2
α2Wi

ı

´ ∆t2L2
2,h

”

α4U
n`1
i `

1

2
β4U

n
i ´

1

2
α4Wi

ı

. (62)

Rearranging (62) gives

A4U
n`1
i “ Un

i `
1

2
Wi ` ∆t2L4,h

”1

2
β2U

n
i ´

1

2
α2Wi

ı

´ ∆t4L2
2,h

”1

2
β4U

n
i ´

1

2
α4Wi

ı

pn “ 0q, (63)

and substituting for Wi leads to

A4U
n`1
i “ Un

i ` ∆t u1,i `
∆t3

6
L2,hu1,i (64a)

` ∆t2L4,h

´1

2
β2U

n
i ´ α2p∆t u1,i`

∆t3

6
L2,hu1,iq

¯

(64b)

´ ∆t4L2
2,h

´1

2
β4U

n
i ´ α4p∆t u1,i`

∆t3

6
L2,hu1,iq

¯

. (64c)

The terms in blue are dropped, based on accuracy, and this keeps the stencil compact. Note that scheme (64)
has the same implicit operator A4 as scheme (56). If the red term L2,hu1,i in (64) is replaced by L4,hu1,i,
then the form of (64) is similar to the usual interior update and the same code can be used for both the first
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step and later steps with the appropriate choice of coefficients.

6.4. Solution of the implicit time-stepping equations

For the overset grid results presented in this article the implicit equations are solved either with a direct
sparse solver (for problems that are not too large) or with a Krylov space method (bi-CG-stab with an ILU
preconditioner). All two-dimensional examples presented in this article use a direct sparse solver. For the
three-dimensional sphere problem, a fixed (relative) residual tolerance of 10´10 is used with the bi-CG-stab
method. When iterative methods are used, the initial guess for the iterative solver at each time step is chosen
by linear extrapolation in time. In general, the residual tolerance could be chosen based on the expected
truncation error in the discrete solution, thus reducing the cost of the iterative solve. However, doing this
could affect the stability properties of the scheme and thus this strategy requires some study. We leave this
to future work.

The approach we currently use to solve the implicit systems is not efficient since an implicit matrix is
formed for all grids points, on both explicit and implicit grids. The implicit matrix entries corresponding to
the equations at points treated explicitly are simply the identity. This approach was done so that existing
software could be used. A more efficient approach would be to only form a system for the implicit points.
Moreover, it is often the case that the implicit points on different component grids are not coupled and in
this case multiple smaller implicit systems could be formed.

7. Matrix stability analysis on one-dimensional overset grids

In this section, matrix stability analysis is used to study the behavior of the new schemes on a collection
of one-dimensional overset grids. A large number of overset grids with different grid spacings are considered
to determine the stability behavior for a wide range of grid configurations. A scaled upwind dissipation
coefficient νγ “ γνp is used with γ P r0, 1s to show how the stability of the scheme depends on the amount
of dissipation ranging from no dissipation γ “ 0 to full dissipation γ “ 1. In particular, the results for γ “ 0
show the necessity of upwind dissipation. For some cases, the number of upwind corrections, nu, must also
be chosen greater than one for stability.

The time-stepping update on an overset grid is written in the form of a single vector update for the
active unknowns (i.e. unknowns corresponding to the interior equations) excluding the constraint unknowns
(i.e. unknowns associated with the boundary conditions and interpolation equations). For homogeneous
boundary conditions, this update is written in terms of the matrices B1 and B2 and the vector Vn of active
unknowns at time tn,

Vn`1 “ B1V
n ` B2V

n´1. (65)

For a given overset grid, the associated eigenvalues and eigenvectors can be determined and this shows
whether discrete solutions grow in time or not.

7.1. Matrix stability formulation

Some details on the construction of the matrix stability equation (65) is now described. We assume the
problem domain is Ω “ r´1, 1s and let it be discretized with an overset grid as shown in Figure 4. The left
domain is ΩL “ r´1, bLs, where bL may vary, and the right domain is fixed at ΩR “ r0.5, 1s. The right grid
is meant to model the boundary-fitted grid on a more general overset grid. It is known from experience that
a difficult case for stability is when there are relatively few grid points on the boundary-fitted grid; in this
case perturbations in the solution generated by the interpolation points can reflect back and forth between
the interpolation points and the nearby boundary perhaps leading to an unstable growth. Let Un

L,j and Un
R,j

denote grid functions on the left and right grids, respectively, at time tn. The active points on the left grid
are j “ 1, 2, . . . , NL, while those on the right grid are j “ 0, 1, 2, . . . , NR ´ 1. Dirichlet boundary conditions
are given at j “ 0 (left grid) and at j “ NR (right grid). The interpolation points on the left grid are at
j “ NL ` 1, . . . , NL ` nghost, where nghost “ p{2 ` 1 is the number of ghost points. The interpolation points
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on the right grid are at j “ ´nghost, . . . ,´1. The grid spacings for the left and right grids are uniform
with hL “ pbL ` 1q{NL and hR “ 0.5{NR. In our study of stability for a collection of overset grids, NR is
held fixed and thus hR is also fixed. We then select a ratio of the grid spacings δ “ hL{hR which implies
bL “ ´1 ` δhRNL. The value for NL, and the corresponding value for bL, is chosen to minimize the grid
overlap while maintaining the assumption of an explicit interpolation as discussed in more detail below. The
sampling of overset grids is performed for grids for a range of grid spacing ratios δ P rδmin, δmaxs as noted
below.

xL,0

UL,0

xL,1

UL,1

xL,2

UL,2

. . . xL,NL

UL,NL

xL,NL`2

UL,NL`2

xR,´2

UR,´2

xR,0

UR,0

xR,1

UR,1

xR,NR

UR,NR

. . .

Figure 4: One-dimensional overset grid used for the matrix stability analyses. Interpolation points are marked as circles, ghost
points are marked as squares.

In Stages 1 and 2 of the SPIE scheme in (30), the solutions for the left and right grids are advanced one
time step (without dissipation) and the boundary/interpolation conditions are applied. This step can be
written in matrix form as

Q0U
p0q “ Q1U

n ` Q2U
n´1, (66)

where Un is a vector holding all of the unknowns on the two grids (including ghost points and interpola-
tion points). The equations in (66) include the interior equations, boundary conditions and interpolation
equations. The matrix Q0 is equal to the identity matrix at active points using an explicit scheme, while
the matrix has values corresponding to the implicit operators A2 in (50) and A4 in (57) at active points
corresponding to the second and fourth-order accurate implicit schemes, respectively. The matrix Q0 also
includes the boundary conditions and interpolation equations; the corresponding rows in Q1 and Q2 are
zero. For example, the boundary conditions on the left grid are

U
p0q

L,0 “ 0, (67)

U
p0q

L,´j “ ´U
p0q

L,j , j “ 1, . . . , nghost, (68)

where the odd symmetry conditions on the ghost points are determined from compatibility conditions. The
boundary conditions on the right grid are similar. The values at interpolation points are found using Lagrange
interpolation for a stencil of p` 1 points. For example, an interpolation point on the left grid is found using
a formula of the form

U
p0q

L,k “

p`1
ÿ

j“1

wL

k,j U
p0q

R,mk`j . (69)

where mk denotes the left index of the interpolation stencil, chosen to make the interpolation as centered
as possible, and wL

k,j are interpolation weights. The values on the right hand side of (69) are known as
donor points. The interpolation is taken to be explicit so that none of the donor points for one grid are
interpolation points for the other grid. The interpolation stencil is of width p ` 1 as needed for a p-order
accurate scheme when the width of the overlap scales with the mesh spacing [41].

Explicit upwind dissipation is incorporated in Stage 3 of the SPIE scheme. Assuming nu applications of
the dissipation, the updates of the solution at this stage have the matrix form

P0U
pkq “ P1U

pk´1q ` P2U
n´1, k “ 1, 2, . . . , nu, (70)
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where P0, like Q0, includes the boundary/interpolation equations. Finally, the solution at the new time is

Un`1 “ Upnuq. (71)

Combining the time step in Stages 1/2 and the corrections in Stage 3 leads to a three-level matrix equation
of the form

Un`1 “ A1U
n ` A2U

n´1. (72)

where A1 and A2 are coefficient matrices generated from the ones in (66) and (70). The constraint unknowns
in (72) can be eliminated by row operations and this leads to the compressed form in (65). The correctness
of the matrices B1 and B2 in (65) is checked by comparing, at each time-step, the solution computed using
the SPIE scheme in (30) with the solution arising from the compressed form (65).

To investigate the growth of solutions to the discrete problem (65) we look for solutions of the form
Vn “ an V0 which leads to a quadratic eigenvalue problem for a given by

pa2I ´ aB1 ´ B2qV0 “ 0. (73)

This quadratic form can also be written as a regular eigenvalue problem of twice the dimension,

„

O I
B2 B1

ȷ „

V0

V1

ȷ

“ a

„

V0

V1

ȷ

. (74)

The eigenvalue problem in (74) is solved easily with standard software.
For the stability studies, we set NR “ 10 for the right grid with fixed domain ΩR “ r0.5, 1s. This

right grid represents the local boundary grid in a general overset grid. The grid spacing on the left grid is
determined by hL “ δhR, where δ is the ratio of grid spacings. This ratio is varied from 1

2 to 2 to represent
typical overset grids where the grid spacings in the overlap are chosen to be nearly the same. For each value
of δ, the parameters bL and NL for the left grid are determined based on the grid overlap as discussed above.
Finally, the parameter γ for the scaled upwind dissipation coefficient νγ “ γνp is varied between 0 and 1 to
study how much dissipation is needed to stabilize the SPIE scheme for the different cases considered.

Figure 5 shows some sample results for the SPIE2-UW-PC scheme. The left grid uses the EME2 explicit
scheme with CFL “ 0.9, while the right grid uses the IME2 implicit scheme. Explicit upwind dissipation is
added in a corrector step with νp given by (29) and nu “ 1 corrections. The safety factor for νp is chosen
as sf “ .9. Two grid cases are shown for γ “ 0.3; one with grid-ratio δ “ .5 and one with δ “ 1.55. The
grid plotted on the top of the figure is stable as shown in the middle left plot; all eigenvalues of a satisfy
|a| ď 1 ` tola, where tola “ 10´8. The grid on the bottom has two unstable modes, as illustrated on the
middle right plot. The conclusion for this representative case is that there is insufficient dissipation for the
SPIE2-UW-PC scheme with γ “ 0.3 and nu “ 1.

7.2. Matrix stability numerical results

Results are now presented using different combinations of explicit and implicit schemes; different orders of
accuracy (p “ 2 and p “ 4), and different numbers of upwind corrections. The following cases are considered

1. EMEp: explicit pth-order accurate ME schemes are used on the left and right grids.

2. IMEp: implicit pth-order accurate ME schemes are used on the left and right grids.

3. SPIEp : An EMEp scheme is used on the left grid and an IMEp scheme is used on the right grid.

Explicit upwind dissipation is used in all cases. Unless otherwise specified, the IME schemes use the param-
eters, α2 “ 1{4 and α4 “ 1{12. For each value of upwind scaling factor γ, the grid-ratio δ is varied form .25
to 2 using Nδ “ 101 different values (i.e. Nδ different overset grids).

Figure 6 shows results for the EMEp scheme. The time-step is chosen so that the CFL number is 0.9 on
the side with the smallest grid spacing. The number of unstable grids is plotted versus γ, the scaling factor
of the dissipation coefficient νp. For p “ 2 and γ “ 0 (no dissipation), roughly 60% of the grids tested are
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Figure 5: Example stable and unstable cases for the SPIE2-UW-PC scheme with γ “ 0.3. Middle left: amplification factors a
for the stable case corresponding to the grid on the top, grid-ratio δ “ .5. Middle right: amplification factors a for the unstable
case corresponding to the grid on the bottom, grid-ratio δ “ 1.55.

unstable. This number drops to about 25% when γ “ 0.1, and there are no unstable grids for γ ě 0.3. For
p “ 4 a value of about γ “ 0.5 is sufficient to stabilize all the grids tested.

Figure 7 shows results for IMEp schemes. Note that these schemes use a single implicit solve over both
grids (i.e. the implicit solves are coupled, not partitioned). For p “ 2 (p “ 4), the time-step is chosen so
that CFL number is 4.0 (5.0) on the side with the smallest grid spacing. The number of explicit upwind
corrections is set to nu “ 4 for p “ 2 and nu “ 5 for p “ 5. This choice is made since the value of νp for
the IME schemes scales with the inverse of the CFL. The results in Figure 7 show that the schemes have no
unstable grids for γ ě 0.1.

Figure 8 shows results for the implicit-explicit SPIE scheme. The left grid uses an explicit solver and the
overall time-step is chosen to match a CFL number of 0.9 on this grid. The CFL number on the implicit
grid varies between grids and reaches a maximum of 1.8. The left column of plots show results for the
second-order accurate SPIE2+UW+PC scheme using nu “ 1 (sf “ 0.9) and nu “ 2 (sf “ 1.9) upwind
corrections. With nu “ 1 there are no unstable grids for γ ě 0.8. For nu “ 2, which incorporates more
dissipation, there are no unstable grids for γ ě 0.3. The right column of plots show corresponding results
for the fourth-order accurate SPIE4+UW+PC scheme using nu “ 1 (sf “ 0.9) and nu “ 2 (sf “ 1.9). This
fourth-order accurate SPIE scheme presents a more difficult case to keep stable. With nu “ 1, there are
some unstable grids even for γ “ 1, while the grids are stable for γ ě 0.6 using nu “ 2.

A possible reason the SPIE schemes may require more dissipation to remain stable compared to the other
cases is that there is a mismatch in the truncation errors between the left and right grids, the IME schemes
generally having larger errors than the corresponding EME schemes. Some support for this hypothesis comes
from results shown in Figure 8 when using the trapezoidal IME scheme with α2 “ 1{2 and α4 “ 5{24. The

20



0 0.2 0.4 0.6 0.8 1

Upwind parameter 

0

20

40

60

80

100
%

 u
n

s
ta

b
le

 g
ri
d

s

EME2+UW+PC, CFL
max

=0.9, n
u
=1

0

0.005

0.01

0.015

0.02

0.025

|a
|-1

0 0.2 0.4 0.6 0.8 1

Upwind parameter 

0

20

40

60

80

100

%
 u

n
s
ta

b
le

 g
ri
d

s

EME4+UW+PC, CFL
max

=0.9, n
u
=1

0

0.005

0.01

0.015

0.02

0.025

|a
|-1

Figure 6: Overset grid EMEp: Fraction of unstable grids versus dissipation parameter γ for the EMEp scheme on an overset
grid. The colour of each dot corresponds to the value of |a| ´ 1 for the most unstable mode.
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Figure 7: Overset grid IMEp: Fraction of unstable grids versus dissipation parameter γ for the IMEp scheme on an overset
grid. The colour of each dot corresponds to the value of |a| ´ 1 for the most unstable mode.

Trapezoidal scheme has a larger truncation error compared to the default scheme. As seen in Figure 9 the
trapezoidal scheme is more difficult to stabilize.

8. Numerical results

In this section we present numerical results to demonstrate the accuracy, stability, and efficiency of the
proposed new implicit modified equation schemes. The results are organized into two groups. The results in
first group are aimed at demonstrating the accuracy and stability of the schemes. For this group, numerical
solutions are computed for several problems in two and three dimensions where exact solutions are available.
In addition, long-time simulations are performed for problems in two and three dimensions with random
initial conditions as a demonstration of the stability of the schemes. The results in the second group are
used to illustrate the performance of the SPIE schemes for problems with geometric stiffness.

In all examples the wave speed c is taken to be one. For overset grid problems using the SPIE scheme, the
curvilinear grids are taken to be implicit and the Cartesian grids are taken to be explicit. Unless otherwise
specified the IME schemes use the implicit weighting parameters

α2 “
1

4
, α4 “

1

12
. (75)
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Figure 8: Overset grid SPIE: Fraction of unstable grids versus dissipation parameter γ for the SPIE scheme on an overset grid
with weights α2 “ 1{4, and α4 “ 1{12. The colour of each dot corresponds to the value of |a| ´ 1 for the most unstable mode.

This choice for α2 and α4 is made to reduce the magnitude of the coefficient in the leading term of the
truncation error (see [43]). For grids g using an implicit method, the coefficient of upwind dissipation is
chosen as

νp “
sf

2p`1
?
nd

1

λg
, (76)

where sf is the safety-factor and where λg is the CFL number for grid g, which on a Cartesian grid is given
by

λg
def
“ c∆t

g

f

f

e

nd
ÿ

d“1

1

h2
d

“

g

f

f

e

nd
ÿ

d“1

λ2
xd
. (77)

For grids using an explicit method we take

νp “
sf

2p`1
?
nd

. (78)

since λg « 1 for such grids according to the CFL condition. Unless otherwise stated, all computations use a
safety factor sf “ 1 and nu “ 1 upwind correction steps.
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Figure 9: Overset grid SPIE + Trap: Fraction of unstable grids versus dissipation parameter γ for the SPIE scheme on a overset
grid with trapezoidal weights α2 “ 1{2, and α4 “ 5{24. The colour of each dot corresponds to the value of |a| ´ 1 for the most
unstable mode.

8.1. Accuracy and stability of the IME and SPIE schemes

We begin with numerical results illustrating the accuracy and stability of the second and fourth-order
accurate IME and SPIE schemes.

8.1.1. Eigenmodes on a disk

In this section, eigenmodes of the unit disk in two dimensions are computed. We look for time-periodic
solutions to the wave equation. In polar coordinates pr, θq, these solutions have the form

umθ,mr
pr, θ, tq “ Jmθ

pkmθ,mr
rq eimθθ eiωt (79)

where Jmθ
is the Bessel function of the first kind of (integer) order mθ, kmθ,mr

, mr “ 1, 2, . . . are the
positive zeros of Jmθ

(for the case of Dirichlet boundary conditions) or J 1
mθ

(for the case of Neumann
boundary conditions). The frequency of vibration for a particular eigenmode is given by

ω “ c kmθ,mr
. (80)

The initial conditions use the exact solution and its time derivative at t “ 0.
Numerical solutions are computed using the fully implicit IME-UW-PC scheme and the mixed explic-

it/implicit SPIE-UW-PC scheme using the overset grid for the unit disk consisting of a background Cartesian

grid (blue) and an annular boundary-fitted grid (green) as shown in Figure 10. The grid, denoted by Gpjq

disk,
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has a target grid spacing of ∆spjq
“ 1{p10jq, where the index j determines the size of the grid spacing. The

figure also shows a representative solution at t “ 1 computed using the IME scheme and the grid Gp4q

disk for
the case pmθ,mrq “ p2, 2q and Dirichlet boundary conditions. For this Dirichlet case, kmθ,mr

« 8.41724414,
while kmθ,mr

« 6.70613319 for Neumann case (not shown). The rightmost plot in the figure shows the
(signed) max-error in the solution. The error is seen to be smooth with negligible artifacts due to the
interpolation at the grid overlap.

u, t “ 1

-.26 .26

err, t “ 1

-9.3e-5 9.3e-5

Figure 10: Results for the disk. Left: overset grid Gp2q

disk for a disk. Middle: computed eigenfunction pmθ,mrq “ p2, 1q. Right:

error. Implicit time-stepping, order four, grid Gp4q

disk.

Figure 11 shows grid convergence results. Numerical solutions are computed using a time-step ∆t “ .04{j

for grids Gpjq

disk, j “ 2, 4, 8, 16. Max-norm errors at t “ 0.7 are plotted as a function of the grid spacing. The
left-plot in the figure shows results for the eigenmode pmθ,mrq “ p2, 2q using the IME-UW-PC scheme for
both Dirichlet and Neumann cases. The results show that the numerical solutions are converging at close
to the expected rates (as indicated by the reference lines in the log-log plots). The right-plot in the figure
shows results for the same eigenmode, but using the SPIE-UW-PC scheme with time-step determined by
the explicit grid. As with the case of the fully implicit scheme, the results show that the numerical solutions
are converging at close to the expected rates.

Figure 11: Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC scheme.
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8.1.2. Scattering from a 2D cylinder

We consider the scattering of a plane wave from a cylinder of radius a in two dimensions. The incident
field is taken to be

uincpx, tq “ eikpx´ctq, (81)

where k is the wave number of the incident field in the reference direction given by x. The exact solution is
written in polar coordinates pr, θq with the usual assignment x “ r cos θ. A homogeneous Dirichlet boundary
condition on the cylinder is assumed so that the total field (incident plus scattered) is given by

upr, θ, tq “ e´ikct
8
ÿ

m“0

ϵm im

«

Jmpkrq ´
Jmpkaq

H
p1q
m pkaq

Hp1q
m pkrq

ff

cospmθq, (82a)

“ eikpx´ctq ´ e´ikct
8
ÿ

m“0

ϵm im

«

Jmpkaq

H
p1q
m pkaq

Hp1q
m pkrq

ff

cospmθq, (82b)

where ϵ0 “ 1 and ϵm “ 2 for m ą 0, and H
p1q
m pzq “ Jmpzq ` iYmpzq is the Hankel function of the first kind

of order m defined in terms of the Bessel functions of the first and second kind. Real-valued solutions are
obtained by using either the real or imaginary parts of the solutions in (82). The initial conditions use the
exact solution and its time derivative at t “ 0.

Numerical solutions are computed using an overset grid, denoted by Gpjq

scat, consisting of two component
grids, a background Cartesian grid covering r´2, 2s2 and an annular grid with inner radius a “ 0.5 and outer
radius b “ 0.8. The inner radius represents the cylindrical scatterer with a homogeneous Dirichlet boundary
condition applied there, and the boundary conditions on the outer boundaries of the Cartesian grid are set
to the exact solution. The target grid spacing is approximately equal to ∆spjq

“ 1{p10jq in all directions.

u, t “ 1.0

-1.76 1.62

err, t “ 1.0

-1.7e-5 1.4e-5

Figure 12: Scattering from a cylinder. Left: overset grid for scattering from a cylinder. Middle and right: solution and errors

for SPIE-UW-PC, order four, grid Gp8q
scat, k “ 10.

Figure 12 shows the overset grid Gp2q

scat and contours of the computed solution and errors at t “ 1 using

the fourth-order accurate SPIE-UW-PC scheme. The grid Gp8q

scat is used for this calculation with k “ 10. The
errors are seen to be smooth.

Figure 13 shows grid convergence results at t “ 0.4 for an incident field with k “ 2 using the second and
fourth-order accurate IME-UW-PC and SPIE-UW-PC schemes. Max-norm errors are plotted as a function
of the grid spacing and the solutions are seen to be converging at close to the expected rates.

8.1.3. Eigenmodes on a sphere

We now consider eigenmode solutions of a solid unit sphere assuming a homogeneous Dirichlet boundary
condition on the surface of the sphere. Introduce spherical polar coordinates pr, θ, ϕq, where r is the radius,
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Figure 13: Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC scheme.

θ P r0, 2πs is the angle in the x-y plane and ϕ P r0, πs the angle from the z-axis. We assume time-periodic
eigenmodes with frequency ω having the well known form

umr,mθ,mϕ
pr, θ, ϕ, tq “ r´1{2 Jmϕ` 1

2
pλmϕ,mr

rqPmθ
mϕ

pcosϕq eimθθ eiωt, (83)

where Jmϕ` 1
2
, mϕ “ 0, 1, 2, . . ., are Bessel functions of fractional order, Pmθ

mϕ
, mϕ ě mθ, are associated

Legendre functions, and λmϕ,mr
, mr “ 1, 2, . . ., are zeros of Jmϕ` 1

2
. The frequency of vibration is given by

ω “ c λmϕ,mr
. The initial conditions use the exact solution and its time derivative at t “ 0.

The composite grids for the solid sphere of radius one, denoted by Gpjq
s , consist of four component grids,

each with grid spacing approximately equal to ∆spjq
“ 1{p10jq. The sphere is covered with three boundary-

fitted patches near the surface as shown on the left in Figure 15. There is one patch specified using spherical
polar coordinates that covers much of the sphere except near the poles. To remove the polar singularities
there are two patches that cover the north and south poles, defined by orthographic mappings. A background
Cartesian grid (not shown) covers the interior of the sphere. The middle image in the figure shows the solution
at t “ 0.5 for the eigenmode with pmϕ,mθ,mrq “ p2, 1, 1q and λmϕ,mr « 5.7634591968945. This solution is

computed using the fourth-order accurate SPIE-UW-PC scheme and the grid Gp4q
s . The right image shows

the max errors which are smooth.

u, t “ 0.5

-1.1 1.1

err, t “ 0.5

-3.1e-6 3.1e-6

Figure 14: Sphere eigenmodes. Left: exploded view of the surface patches of the overset grid for the interior of a sphere.

Middle and right: Computed solution and errors for the fourth-order accurate SPIE-UW-PC scheme on grid Gp4q
s , eigenmode

pmϕ,mθ,mrq “ p2, 1, 1q. A coarsened version on the grid is shown.

Figure 15 shows grid convergence results for the eigenmode pmϕ,mθ,mrq “ p2, 1, 1q at t “ 0.4. Results
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are shown for the second and fourth-order accurate IME-UW-PC and SPIE-UW-PC schemes. The graphs
demonstrate that the solutions are converging at close to the expected rates.

Figure 15: Left: grid convergence results for the IME-UW-PC scheme. Right: grid convergence results for the SPIE-UW-PC
scheme.

8.1.4. Long time simulations with random initial conditions

In this section we perform some very long-time simulations to confirm numerically that the solutions
computed using the IME and SPIE schemes with upwinding remain stable and bounded. Initial conditions
are chosen with random grid values on r0, 1s so that all eigenmodes, including any possible unstable ones,
would be seeded with an order one amount of energy. The numerical schemes are integrated to very long
times and the solutions are monitored for any growth. Due to the upwinding, the magnitude of the computed
solutions for a stable scheme is expected to decay slowly to zero over time.

To assess the growth or decay of the solution we plot a discrete approximation to the energy given by

Eptq “
1

2

´

}Btu}2Ω ` c2}∇u}2Ω

¯

, (84)

where } ¨ }Ω denotes the L2´norm over the domain Ω. We note that the energy defined in (84) remains
constant in time for exact solutions of the wave equation on Ω assuming homogeneous Dirichlet or Neumann
conditions specified on the boundary of Ω. For purposes of this study, a first order accurate approximation
to (84) is sufficient, denoted by Eh. D´tU

n
i is used to approximate the time derivative in (84) and first order

accurate backward differences are used to approximate the spatial derivatives, for example on a Cartesian
grid Bxu « D´xU

n
i . Note that the discrete energy Eh would remain approximately constant if the scheme is

stable, but with upwind dissipation included the discrete energy is expected to decay over time.

0 2000 4000 6000 8000 10000

t

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random initial conditions, disk

0 200 400 600 800 1000

t

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random initial conditions, sphere

0 2000 4000 6000 8000 10000

t

10
0

10
5

10
10

Random initial conditions, disk

Figure 16: Long time simulations. Left: disk, SPIE-UW-PC. Middle: sphere, SPIE-UW-PC. Right: disk, IME-UW-PC.
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Figure 16 shows results from some long-time simulations for both the SPIE and IME schemes. In all cases
the schemes remained stable. The left plot shows the discrete energy Ehptq over time for a computation on the

disk grid Gp4q

disk as described in Section 8.1.1. The final time is t “ 104 for the simulation and approximately
6 ˆ 105 time-steps are used. Results are shown for the second and fourth-order accurate SPIE-UW-PC
schemes. The discrete energy is seen to decay rapidly at first as the high-frequency components of the
solution are damped by the high-order upwind dissipation. As time progresses the solution becomes smoother
and the energy decays more slowly. The discrete energy for the fourth-order accurate scheme decays more
slowly than the second-order accurate scheme since its dissipation scales as Oph5q compared to Oph3q for the

second-order accurate scheme. The middle plot shows results for the three-dimensional solid sphere grid Gp4q
s

as described in Section 8.1.3. In this case the final time is t “ 103 and the calculation requires approximately
105 time-steps. The results show that the discrete energy decays and schemes remain stable for the spherical
case in qualitative agreement with the results for the disk case.

The right-most plot of Figure 16 compares the energy decay for the (fully implicit) IME4-UW-PC scheme

on the disk grid Gp4q

disk for three different values of the CFL number, 1, 5 and 10. In each case the scheme
remains stable and the discrete energy Eh decays. The dissipation parameter νp is the same for each case.
Note that the CFL=10 run takes 10 times fewer time-steps than the CFL=1 run, and thus the dissipation
has fewer time-steps to act.

8.2. Performance of the SPIE scheme

We now turn our attention to a set of examples that posses some geometric stiffness. For such problems
it is demonstrated that the SPIE scheme can be much faster than the fully explicit schemes. Importantly,
it is also shown that the accuracy of the computed solutions from the SPIE scheme are, in general, quite
similar to the accuracy of the explicit ME solutions. Thus, at least for the cases shown here, taking a large
CFL time-step using an implicit ME method in small parts of the domain where geometric stiffness occurs
does not appear to have a significant effect on the overall accuracy.

8.2.1. Scattering from a small hole

This section studies the accuracy and performance of the SPIE scheme for the scattering of a plane wave
from a small cylinder in two space dimensions. The incident wave, exact solution, and overset grid topology
were described previously in Section 8.1.2. The results presented in this section show that the SPIE scheme
can compute solutions much faster than the EME scheme but with similar errors.

0 2 4 6 8 10

t
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10
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10
-3

10
-2

Max errors, small hole

Figure 17: Scattering from a small hole. Left: overset grid Gp2q
scat and magnified views. Right: max-norm errors over time for

the EME4 and SPIE4 schemes on grid Gp4q
scat. The SPIE4 scheme achieves similar errors to the EME4 scheme but at a factor 21

reduced CPU cost.

A very small cylindrical hole of radius a “ 0.01 sits at the center of a square domain r´2, 2s2. The
overset grid is shown in Figure 17. An incident field with wave-number k “ 10 impinges on the hole
where a homogeneous Dirichlet boundary conditions is applied. The exact solution is imposed on the outer
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Figure 18: Scattering from a small hole. Left: contour plot of the total field u. Middle: surface plot of the scattered field us.

Right: errors in u. Solution at t “ 1 computed on grid Gp4q
scat using the EME4-UW-PC scheme.

boundaries of the square. The solution is computed to a final time of t “ 10 using the EME4-UW-PC
scheme and the SPIE4-UW-PC scheme with nu “ 2 upwind corrections.5 For the SPIE scheme, implicit
time-stepping is used for the boundary-fitted annular grid with radial stretching near the small hole, while
explicit time-stepping is used for the Cartesian background grid. Figure 18 shows the computed solution
at t “ 1 for the total field, u, the scattered field, us, and the error in u. Note that there is a significant
scattered field for this case even though the radius of the cylinder a “ 0.01 is fairly small compared to
the wavelength, 2π{k « 0.63, of the incident field. The error is seem to be smooth with the largest errors
distributed throughout the domain; there are no particularly large errors in the vicinity of the hole.

The right graph in Figure 17 compares the max-norm errors over time for the EME4 and SPIE4 schemes.
The error in the EME scheme starts out smaller but then becomes similar in magnitude to the errors in the
SPIE4 scheme. The time-step for the EME4 scheme is approximately 30 times smaller than that for the
SPIE4 scheme, and the CPU time required to compute the solution at t “ 10 using the SPIE4 scheme is
approximately 20 times smaller than that needed for the EME4 scheme.

These results thus illustrate that for longer times the problem can be considered geometrically stiff since
an implicit algorithm can obtain the required accuracy faster than an explicit one. On the other hand, if
high-accuracy is needed over short times then a fully explicit scheme may be more efficient.

8.2.2. Scattering of a modulated Gaussian plane wave by a collection of small holes

We consider the scattering of a modulated Gaussian plane wave from two different arrays of small holes.
This example demonstrates an interesting scattering problem for a geometry with small geometric features
for which the SPIE scheme gives a good speedup over the explicit scheme. The incident field consists of a
modulated Gaussian plane wave traveling from left to right and given by the formula

upx, tq “ e´βpx´x0´ctq2 cosp2π k0 px ´ x0 ´ ctqq, (85)

where the Gaussian shape parameter is β “ 20, the modulation wave-number is k0 “ 8, and the center of
the pulse is at x0 “ ´2 initially. The initial conditions use (85) and its time derivative at t “ 0.

Two configurations of holes are considered for the region r´3, 2s ˆ r´2, 2s. The first, called the aligned-
hole configuration, contains an array of Mx ˆMy holes, each of radius a “ 0.01, with Mx “ 7 and My “ 26.
The centers of the holes are located at

xmx,my
“

„

mx sx
my sy

ȷ

´
1

2

„

pMx ´ 1qsx
pMy ´ 1qsy

ȷ

, mx “ 0, 1, . . . ,Mx, my “ 0, 1, . . . ,My, (86)

5Using nu “ 1 was not sufficient for stability for this problem; as noted in Section 4.2, the dissipation coefficient on implicit
grids decreases with increasing CFL number and for large CFL numbers it may be necessary to use a larger nu.

29



where sx “ 0.15 and sy “ 0.15 denote the hole separations in the x and y directions, respectively. The
second configuration, called the offset-hole configuration, also contains Mx “ 7 columns of holes, but every
second column is shifted vertically by sx{2 and contains 27 holes instead of 26.

SPIE

EME

Figure 19: Left: Closeup of the aligned hole grid. Middle: Closeup of the offset hole grid. The white dots on the right plots
are small holes with a grid around each as shown on the left. Right: comparison of the implicit-explicit SPIE solution (top
half of computation) to the explicit EME scheme (bottom half of computation) on the aligned hole grid. The results are nearly
indistinguishable.

The overset grid for the aligned-hole configuration, denoted by Gpjq

h,a, consists of a background Cartesian
grid for the region r´3, 2sˆr´2, 2s, together with small annular grids around the holes as shown in Figure 19.

The nominal grid spacing is ∆spjq
“ 1{p10jq with the grid lines on the annuli slightly smaller and clustered

near the boundary as shown in the figure. The overset grid for the offset-hole configuration, denoted by Gpjq

h,o,
has a similar construction to that of the aligned-hole grid following its placement of holes. The boundary
conditions are taken as Dirichlet on the holes, Dirichlet on the left and right ends of the outer rectangle and
periodic in the y-direction of the outer rectangle.

Figure 20 shows the solution at three times for the two grid configurations of aligned and offset holes.

The solution is computed with the SPIE4-UW-PC scheme on grids Gp16q

h,a and Gp16q

h,o . Note that there are
some edge effects in the solutions near the top and bottom periodic boundaries of the domain, due to the
arrangement of the hole grids near these boundaries. The solution at t “ 1 shows the incident Gaussian
plane wave just starting to impact the first column of holes. At t “ 2 the wave has travelled through most
of the holes and a reflected wave is beginning to appear. By t “ 3.5 most of the incident wave has been
reflected or transmitted, although some residual wave motion resides within the array of holes. Perhaps
surprisingly, the transmitted wave is much stronger for the offset arrangement of holes.

Returning to Figure 19, the right plot compares contours of the solutions computed using the SPIE and
EME schemes. The top half of the plot shows the SPIE4 solution, while the bottom half shows the EME4
solution. After accounting for the reflection symmetry about the horizontal centerline, the results are nearly
indistinguishable. The speedup of the SPIE scheme over the EME scheme was about a factor of 2 for this
case. The SPIE time-step is about 4 times that for the EME scheme. A better implementation of the
implicit solvers should show an even bigger speedup of perhaps a factor of 3 or more (see the comments in
Section 6.4).

8.2.3. Scattering of a modulated Gaussian plane wave from a knife edge

In this example, a modulated Gaussian plane wave given by (85) travels from left to right and diffracts off
a thin knife edge as shown in Figures 1 and 21. This example demonstrates a problem that is geometrically
stiff due to a sharp corner in the domain geometry, and one for which only a small portion of the overset
grid is treated implicitly.

The overset grid for the geometry, denoted by Gpjq

ke , is shown in Figure 1, and consists of four component
grids. A background Cartesian grid covers the domain r´1.25, 1s ˆ r0, 1s. Two other Cartesian grids lie
adjacent to the lower sides of the knife edge which has a total height of 0.5. A curvilinear grid is used over
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Figure 20: Scattering of a modulated Gaussian plane wave by small holes (the white dots are small holes with a grid around
each as shown in Figure 19). Top: Offset holes. Bottom: Aligned holes.

the tip of the knife edge. The nominal grid spacing was ∆spjq
“ 1{p10jq, although the tip grid used a finer

mesh with stretching to resolve the sharp tip of the knife edge.

Figure 21 shows contours of the solution for three times computed on grid Gp16q

ke using the fourth-order
accurate SPIE4-UW-PC scheme. The Gaussian is centered at x0 “ ´.75 initially and the Gaussian shape
parameter is taken as β “ 80. Neumann boundary conditions are used on the outer boundaries of the domain
and a Dirichlet condition is used on the knife edge. The initial conditions use (85) and its time derivative at
t “ 0. The SPIE scheme is used with only the curvilinear tip grid treated implicitly. As a result, the scheme
is able to use a time-step that is about 20 times larger than that required by the fully explicit EME-UW-PC
scheme. The speedup factor over the fully explicit scheme is found to be about 11 for both the second and
fourth-order accurate SPIE schemes. Note that the tip grid has just 1, 760 grid points out of a total of
928, 765, or 0.2% of the points. Obviously a more efficient implementation of the implicit solver should lead
to speedups closer to a factor of 20, a task for future work.

9. Conclusions

We have described and analyzed a class of new implicit and implicit-explicit time-stepping methods for
the numerical solution of the wave equation in second-order form. These single-step, three time-level, schemes
are based on the modified equation (ME) approach. Second and fourth-order accurate schemes are developed,
although the approach supports higher-order accurate schemes. The coefficient matrix implied by the implicit
scheme is definite and well suited for solution by modern Krylov methods or multigrid. Conditions for
accuracy and unconditional stability of the implicit ME (IME) schemes are derived. Several approaches for
incorporating upwind dissipation into the IME schemes are discussed. A predictor-corrector approach that
adds the upwinding in a separate explicit step appears to be quite useful. For problems on overset grids that
are geometrically stiff due to locally small cells, we have developed a spatially partitioned implicit-explicit
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Figure 21: Scattering of a modulated Gaussian plane wave from a knife edge. Contours of the solution at times t “ .6, .8, 1 for
the modulation wave number k0 “ 20 using the fourth-order accurate implicit-explicit scheme SPIE4-UW-PC. The time-step
was about 20 times larger compared to the corresponding explicit scheme.

(SPIE) scheme whereby component grids with small cells are integrated with the IME scheme while others
grids use an explicit ME (EME) scheme. We have shown that for geometrically stiff problems the resulting
SPIE scheme can be many times faster and more accurate that using the EME scheme everywhere. The
unconditionally stable and high-order accurate implicit modified equation schemes developed here should also
be useful for other discretization approaches such as finite-element methods. These IME schemes overcome
some of the limitations of traditional implicit multi-step methods such as the trapezoidal scheme (only
second-order accurate) or BDF schemes (excessive dissipation for wave propagation). Although developed
for the wave equation, the new schemes can be extended to other wave propagation problems written in
second-order form such as Maxwell’s equations of electromagnetics, elasticity, and acoustics.

Appendix A. Stability proofs

For the stability analyses we consider a Cartesian grid on a 2π periodic domain Ω “ r0, 2πsnd . Von
Neumann analysis expands the solution in a discrete Fourier series in space. The stability condition is
enforced by ensuring each Fourier mode satisfies the condition.

Appendix A.1. Stability of the second-order accurate implicit ME scheme (IME2)

Here is the proof of Theorem 1, the statement of which is repeated here for clarity.

Theorem (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic domain provided

α2 ě
1

4
. (A.1)

Proof. We look for solutions consisting of a single Fourier mode,

Un
j “ an eik¨xj , (A.2)

where a is the amplification factor and k “ rk1, k2, k3sT is the vector of wave numbers, with kd “ ´Nd{2,´Nd{2`

1, . . . , Nd{2 ´ 1, assuming Nd is even. Substituting the anstaz (A.2) into (16) leads to a quadratic equation
for a

a2 ´ 2b a ` 1 “ 0, (A.3a)
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where

b
def
“

1 ` pα2 ´ 1
2 q λ̂2

2 z

1 ` α2λ̂2
2 z

, (A.3b)

λ̂2
2

def
“ ´ yL2,h, z

def
“ ∆t2, (A.3c)

and where yL2,h is the Fourier symbol of L2,h,

yL2,h
def
“ c2

nd
ÿ

d“0

´4 sin2pkdhdq

h2
d

. (A.4)

Note that λ̂2
2 ě 0, with strict inequality λ̂2

2 ą 0 when k ‰ 0. It is not hard to show that for stability
(Definition (1)) we require b P R and |b| ă 1 (the end cases b “ ˘1 lead to double roots a “ ˘1 and linearly
growing modes). Thus, when k ‰ 0, we require

´1 ă
1 ` pα2 ´ 1

2 q λ̂2
2 z

1 ` α2λ̂2
2 z

ă 1, (A.5)

for all z ą 0. The right inequality in (A.5) gives

1 ` pα2 ´
1

2
q λ̂2

2 z ă 1 ` α2λ̂
2
2 z, (A.6a)

ùñ ´
1

2
λ̂2
2 z ă 0, (A.6b)

which is always true. The left inequality implies

´ p1 ` α2λ̂
2
2 zq ă 1 ` pα2 ´

1

2
q λ̂2

2 z, (A.7a)

ùñ ´ 2 `
1

2
λ̂2
2z ă 2α2λ̂

2
2 z, (A.7b)

ùñ α2 ą
1

4
´

1

λ̂2
2 z

. (A.7c)

Therefore we require

α2 ě
1

4
, (A.8)

and this completes the proof.

Appendix A.2. Stability of the fourth-order accurate implicit ME scheme (IME4)

Here is the proof of Theorem 2, the statement of which is repeated here for clarity.

Theorem (IME4 Stability). The IME4 scheme (16) is unconditionally stable on a periodic domain provided

α2 ě
1

12
, (A.9a)

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9 p 1

4 ´ α2q2, when 1
12 ď α2 ď 1

4 .
(A.9b)
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Proof. Using the anstaz (A.2) in (16) leads to following quadratic for the time-stepping amplification factor
a ,

a2 ´ 2b a ` 1 “ 0, (A.10)

where

b
def
“

1 ´ 1
2β2 λ̂

2
4 z ´ 1

2β4 λ̂
4
2 z

2

1 ` α2λ̂2
4 z ` α4λ̂4

2 z
2

, (A.11)

λ̂2
4

def
“ ´ yL4,h, λ̂2

2
def
“ ´ yL2,h, z

def
“ ∆t2, (A.12)

and where

β2 “ 1 ´ 2α2, β4 “ α2 ´ 2α4 ´
1

12
. (A.13)

For stability we require that |b| ă 1 for k ‰ 0,

ˇ

ˇ

ˇ

1 ´ 1
2β2λ̂

2
4 z ´ 1

2β4λ̂
4
2 z

2

1 ` α2λ̂2
4 z ` α4λ̂4

2 z
2

ˇ

ˇ

ˇ
ă 1, (A.14)

which will give constraints on α2 and α4. Requiring (A.14) leads to two conditions,

1 ´
1

2
β2λ̂

2
4 z ´

1

2
β4λ̂

4
2 z

2 ă 1 ` α2λ̂
2
4 z ` α4λ̂

4
2 z

2, (A.15a)

´ p1 ` α2λ̂
2
4 z ` α4λ̂

4
2 z

2q ă 1 ´
1

2
β2λ̂

2
4 z ´

1

2
β4λ̂

4
2 z

2. (A.15b)

These can be simplified to

1

2
λ̂2
4 z ` p

1

2
α2 ´

1

24
qλ̂4

2 z
2 ą 0, (A.16a)

pα4 ´
1

2
β4qλ̂4

2 z
2 ` p2α2 ´

1

2
qλ̂2

4 z ` 2 ą 0. (A.16b)

Inequality (A.16a) must hold for all z ą 0 which implies

α2 ě
1

12
. (A.17)

Inequality (A.16b) is a quadratic inequality in z “ ∆t2,

Az2 ` Bz ` C ą 0, (A.18)

A
def
“ pα4 ´

1

2
β4qλ̂4

2, B
def
“ p2α2 ´

1

2
qλ̂2

4, C
def
“ 2, (A.19)

which must hold for all z ą 0. This quadratic must be flat or concave upward which implies A “ α4´ 1
2β4 ě 0

or

α4 ě
1

4
α2 ´

1

48
ě 0, when

1

12
ď α2. (A.20)

The minimum of the quadratic with z ě 0 occurs when zm “ ´B{p2Aq ě 0, which implies B ď 0 or α2 ď 1
4 .

The minimum value of the quadratic is C ´B2{p4Aq and this should be greater than or equal to zero which

34



implies B2 ď 4AC or

p2α2 ´
1

2
q2λ̂4

4 ď 8pα4 ´
1

2
β4qλ̂4

2, when
1

12
ď α2 ď

1

4
. (A.21)

This last inequality is re-arranged as a condition on α4 in terms of α2, (using (A.13)),

α4 ě
1

4
α2 ´

1

48
`

1

2
pα2 ´

1

4
q2

λ̂4
4

λ̂4
2

, when
1

12
ď α2 ď

1

4
. (A.22)

Using
λ̂4
4

λ̂4
2

ď p4{3q2 in the last term gives

α4 ě
1

4
α2 ´

1

48
`

8

9
p
1

4
´ α2q2, when

1

12
ď α2 ď

1

4
. (A.23)

In summary α2 must satisfy

α2 ě
1

12
, (A.24)

while α4 is constrained by

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9 p 1

4 ´ α2q2, when 1
12 ď α2 ď 1

4 ,
(A.25)

which completes the proof.

Appendix A.3. IME stability with single stage upwind dissipation (IME-UW)

In this section we prove Theorem 3, which is repeated here or clarity.

Theorem. The IME-UW schemes (23) for p “ 2, 4 on a periodic or infinite domain Cartesian grid are
unconditionally stable for any νp ą 0 provided α2 satisfies the conditions of Theorem 1, for p “ 2, or α2 and
α4 satisfy the conditions for Theorem 2 for p “ 4.

Proof. We show the proof for p “ 4, the case p “ 2 is similar. Using the anstaz (A.2) in (23) leads to
following quadratic for the time-stepping amplification factor a ,

a2 ´ 2b a ` c “ 0, (A.26)

where

b
def
“

1 ´ 1
2β2 λ̂

2
4 ∆t2 ´ 1

2β4 λ̂
4
2 ∆t4

1 ` Λ̂ `
νp

2 ∆t q̂2p
, (A.27)

c
def
“

1 ` Λ̂ ´
νp

2 ∆t q̂2p

1 ` Λ̂ `
νp

2 ∆t q̂2p
, (A.28)

Λ̂
def
“ α2λ̂

2
4 ∆t2 ` α4λ̂

4
2 ∆t4, (A.29)

q̂2p
def
“ Q̂p, (A.30)

and where Q̂p ą 0 (for k ‰ 0) is the symbol of the dissipation operator Qp in (22),

Q̂p
def
“

nd
ÿ

d“1

c

hd

“

4 sin2phd{2q
‰p{2`1

. (A.31)
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The conditions for stability come from the theory of Schur and von Neumann polynomials [44, 45] which for
the quadratic (A.26) are

|c| ă 1, (A.32a)

|b| ď
1

2
|1 ` c|. (A.32b)

Note that the magnitude of the product of the roots c in (A.28) is now less than 1, |c| ă 1, when νp ą 0,

since we have assumed Λ̂ ą 0 for k ‰ 0. Thus the first condition (A.32a) is true. Note that

1

2
p1 ` cq “

1 ` Λ̂ `
νp

2 ∆t q̂2p ` 1 ` Λ̂ ´
νp

2 ∆t q̂2p

1 ` Λ̂ `
νp

2 ∆t q̂2p
“

1 ` Λ̂

1 ` Λ̂ `
νp

2 ∆t q̂2p
, (A.33)

and thus 1 ` c ą 0. The inequality (A.32b) thus requires the two conditions

1 ´ 1
2β2 λ̂

2
4 ∆t2 ´ 1

2β4 λ̂
4
2 ∆t4

1 ` Λ̂ `
νp

2 ∆t q̂2p
ď

1 ` Λ̂

1 ` Λ̂ `
νp

2 ∆t q̂2p
, (A.34a)

´
1 ` Λ̂

1 ` Λ̂ `
νp

2 ∆t q̂2p
ď

1 ´ 1
2β2 λ̂

2
4 ∆t2 ´ 1

2β4 λ̂
4
2 ∆t4

1 ` Λ̂ `
νp

2 ∆t q̂2p
(A.34b)

or upon multiplying through by the denominator,

1 ´
1

2
β2 λ̂

2
4 ∆t2 ´

1

2
β4 λ̂

4
2 ∆t4 ď 1 ` Λ̂, (A.35a)

´ p1 ` Λ̂q ď 1 ´
1

2
β2 λ̂

2
4 ∆t2 ´

1

2
β4 λ̂

4
2 ∆t4. (A.35b)

These last two conditions (note that νp has dropped out) are satisfied since these are essentially the same
inequalities (A.15) hold from Theorem Appendix A.2 (the only difference is that ď is replaced by ă in (A.15)).
This proves the theorem.

Appendix A.4. IME Stability with predictor-corrector upwind dissipation (IME-UW-PC)

Here is the proof of theorem 4.

Proof. We prove the result for p “ 2, the proof for p “ 4 follows in a similar fashion. The second-order
accurate IME-UW-PC scheme with multiple stages is

U
p0q

j ´ 2Un
j ` Un´1

j

∆t2
“ Lαp pU

p0q

j , Un
j , U

n´1
j q, (A.36a)

Un`1
j “ Rnu

p U
p0q

j ` pI ´ Rnu
p qUn´1

j , (A.36b)

where

Rp
def
“ I ´

νp∆t

2
Qp. (A.37)

Substituting the ansatz U
p0q

j “ Û p0q eik¨xj and Un
j “ Ûn eik¨xj leads to

Û p0q ´ 2Ûn ` Ûn´1

∆t2
“ ´λ̂2

2

´

α2 Û
p0q ` p1 ´ 2α2q Ûn ` α2 Û

n´1
¯

, (A.38a)

Ûn`1 “ R̂nu
p Û

p0q

j ` pI ´ R̂nu
p qÛn´1

j , (A.38b)
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where

R̂p “ 1 ´
νp∆t

2
q̂p. (A.39)

Solving (A.38a) for Û p0q ,

Û p0q “ 2
1 ´ λ̂2

2∆t2p 1
2 ´ α2q

1 ` α2λ̂2
2∆t2

Ûn ´ Ûn´1 (A.40)

and substituting into (A.38b) gives

Ûn`1 “
R̂nu

p

1 ` α2∆t2 λ̂2
2

”

2Ûn ´ Ûn´1 ´ ∆t2λ̂2
2

`

p1 ´ 2α2q Ûn ` α2 Û
n´1

˘

ı

` p1 ´ R̂nu
p q Ûn´1, (A.41a)

“ 2
1 ´ ∆t2λ̂2

2 p 1
2 ´ α2q

1 ` α2∆t2 λ̂2
2

R̂nu
p Ûn ` p1 ´ 2R̂nu

p qÛn´1. (A.41b)

Now looking for solutions of the form Ûn “ c0 a
n for some constant c0 leads to a quadratic equation for a,

a2 ´ 2ba ` c “ 0, (A.42)

where

b
def
“ R̂nu

p

1 ´ ∆t2λ̂2
2 p 1

2 ´ α2q

1 ` α2∆t2 λ̂2
2

, (A.43)

c
def
“ ´1 ` 2R̂nu

p (A.44)

For stability we require the two conditions (A.32) from Section Appendix A.3,

|c| ă 1 ùñ |1 ´ 2R̂nu
p | ă 1, (A.45)

|b| ď
1

2
|1 ` c| ùñ |R̂p|nu

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ ∆t2λ̂2
2 p 1

2 ´ α2q

1 ` α2∆t2 λ̂2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ď |R̂p|nu (A.46)

If we assume the parameters α2 and λ̂2 are chosen to make the scheme without dissipation stable then

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ ∆t2λ̂2
2 p 1

2 ´ α2q

1 ` α2∆t2 λ̂2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 (A.47)

and (A.46) is satisfied. Condition (A.45) implies 0 ă R̂nu
p ă 1 or

0 ă
`

1 ´
νp∆t

2
q̂p

˘nu
ă 1 (A.48)

which implies (ignoring the special case when νpq̂2 “ 0 )

νp∆t

2
q̂p ă

#

2 if nu is even,

1 if nu is odd.
(A.49)

The conclusions of the proof now follow.
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Appendix A.5. Proof of a lemma

Here is the proof of Lemma 5.1.

Proof. If |κ| “ 1 then it can be written as κ “ eiθ for θ P R. Then, using κ ´ 2 ` κ´1 “ ´4 sin2pθ{2q gives

b “
1 ´ 4p 1

2 ´ α2qλ2 sin2pθ{2q

1 ` 4α2 λ2 sin2pθ{2q
. (A.50)

Note that b P R and |b| ď 1 since b ď 1 implies

1 ´ 4p
1

2
´ α2qλ2 sin2pθ{2q ď 1 ` 4α2 λ

2 sin2pθ{2q, (A.51)

ùñ ´ 2λ2 sin2pθ{2q ď 0, (A.52)

which is true, while b ě ´1 implies

´ p1 ` 4α2 λ
2 sin2pθ{2qq ď 1 ´ 4p

1

2
´ α2qλ2 sin2pθ{2q, (A.53)

ùñ p1 ´ 4α2qλ2 sin2pθ{2q ď 1, (A.54)

which holds when λ ă 1 and α2 ě 0, or for any λ ą 0 when α2 ě 1{4. Now, when b P R and |b| ď 1 then the
magnitude of the roots a of (32a) satisfy

|a| “ |b ˘
a

b2 ´ 1| “ |b ˘ i
a

1 ´ b2| “
a

b2 ` p1 ´ b2q “ 1. (A.55)

This proves the lemma.
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