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LOCAL COMPATIBILITY BOUNDARY CONDITIONS FOR
HIGH-ORDER ACCURATE FINITE-DIFFERENCE
APPROXIMATIONS OF PDES*

NOUR G. AL HASSANIEH', JEFFREY W. BANKS', WILLIAM D. HENSHAWT, AND
DONALD W. SCHWENDEMANT

Abstract. We describe a new approach to derive numerical approximations of boundary con-
ditions for high-order accurate finite-difference approximations. The approach, called the Local
Compatibility Boundary Condition (LCBC) method, uses boundary conditions and compatibility
boundary conditions derived from the governing equations, as well as interior and boundary grid
values, to construct a local polynomial, whose degree matches the order of accuracy of the interior
scheme, centered at each boundary point. The local polynomial is then used to derive a discrete
formula for each ghost point in terms of the data. This approach leads to centered approximations
that are generally more accurate and stable than one-sided approximations. Moreover, the stencil
approximations are local since they do not couple to neighboring ghost-point values which can occur
with traditional compatibility conditions. The local polynomial is derived using continuous opera-
tors and derivatives which enables the automatic construction of stencil approximations at different
orders of accuracy. The LCBC method is developed here for problems governed by second-order
partial differential equations, and it is verified in two space dimensions for schemes up to sixth-order
accuracy.

Key word. compatibility conditions, boundary conditions, heat equation, wave equation, high-
order finite-differences

1. Introduction. We describe a new approach for constructing discrete bound-
ary conditions for high-order accurate numerical approximations to partial differential
equations (PDEs). The approach, called the Local Compatibility Boundary Condi-
tion (LCBC) method, combines the given physical boundary conditions (BCs) with
additional compatibility boundary conditions (CBCs) formed from the PDE and its
derivatives. Our focus here is on finite-difference (and finite-volume) methods for both
time-dependent and steady PDEs in second-order form with physical BCs of Dirichlet
or Neumann type. A high-order accurate centered finite-difference approximation of
the spatial operator of the PDE involves a wide stencil which then requires some spe-
cial treatment to handle the approximation at grid points near the boundary. Unlike
a typical approach involving one-sided approximations of the PDE near the bound-
ary and one-sided approximations of Neumann-type BCs, the LCBC approach results
in fully centered approximations. These centered approximations are generally more
accurate than one-sided approximations, and for the case of time-dependent PDEs
they are more stable and less stiff (i.e. do not decrease the stable explicit time-step).
Furthermore, the new LCBC approach improves upon a more traditional derivation
of discrete CBCs by defining local conditions that are not coupled to neighboring grid
points along the boundary in tangential directions. As a result, there is no need to
solve a system of equations along the boundary which is a significant advantage for
explicit time-stepping schemes. In the case of implicit time-stepping methods, and for
approximations of steady (elliptic) PDEs, where the solution of large linear systems
is required, this tangential decoupling can also be useful for iterative schemes, such
as multigrid and Krylov methods.
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2 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

The development of LCBCs is motivated by our interest in high-order accurate
approximations of PDEs in complex domains using overset grids, although the ap-
plicability of LCBCs is broader. As shown in Figure 1.1, an overset grid consists of
multiple overlapping structured component grids used to cover a complex, and perhaps
moving, problem domain. A mapping is defined for each component grid from physi-
cal space to a unit square (or cube) in a computational (index) space, and the mapped
PDE is discretized in the computational space. We have developed second-order ac-
curate schemes for the equations of linear and nonlinear elasticity [4, 9], and up to
fourth-order accurate schemes for the incompressible Navier-Stokes equations [17, 35]
and Maxwell’s equations [18, 2, 6] using overset grids, among other applications. We
generally use the physical BCs, along with CBCs, to define discrete centered boundary
conditions at external boundaries (with the aid of ghost points), but this approach
becomes increasingly difficult as the order of the approximation increases. The diffi-
culty stems from the algebraic complexity associated with taking higher and higher
derivatives of the spatial operator of the mapped PDE and working out its attendant
discrete approximations (with tangential couplings). An associated difficulty involves
the special treatments required at corners of the problem domain where separate BCs
along sides meet. The LCBC approach overcomes these difficulties by introducing a
polynomial interpolant of the solution about each point on the boundary. The poly-
nomial degree is determined by the desired order of accuracy of the approximation,
and the coeflicients of the polynomial are specified by imposing constraints involving
known solution values at grid points interior to the boundary, the physical BCs and
CBCs. This approach only requires CBCs defined at a continuous level, and these
conditions can be applied to the polynomial interpolant recursively thus easing the
aforementioned algebraic complexity. Once defined, the polynomial interpolant can
be used to specify solution values at ghost points normal to the boundary (or in corner
ghost points for the case of a domain corner) without tangential couplings.

FIGURE 1.1. Some target applications for the new LCBC approach. Left: overset grid for two
spherical bodies and computed incompressible flow (vorticity). Right: overset grid for a spiral wire
and computed electromagnetic scattering.

The aim of the present paper is to describe the LCBC approach in detail for a
general class of PDEs in second-order form and to investigate the properties of the
resulting discretizations. For example, in the case of a straight boundary and where
the spatial operator is the Laplacian, it is well known that for Dirichlet (Neumann)
boundary conditions the solution has odd (even) symmetry at the boundary. This
leads to simple numerical reflection conditions, and we show that the LCBC approach
naturally results in these same reflection conditions (while one-sided approximations
would not in general). Beyond this special case, we show that the LCBC approach
leads to accurate discretizations of the PDEs, and their BCs, for all orders of accuracy
tested (up to sixth order). Further, we show that there is no additional time-step
restriction for stability for the case of explicit time-stepping schemes. We focus here
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LOCAL COMPATIBILITY BOUNDARY CONDITIONS 3

on linear PDEs, but the approach should be extendible to nonlinear problems as
well. In this article we focus on scalar PDEs, but the approach is also applicable
to problems with vector PDEs (e.g. the equations of linear elasticity and Maxwell’s
equations) and to problems with material interfaces. Our ultimate goal is to automate
the construction of CBC conditions for any order of accuracy and for a wide range
of PDEs. We believe that by using the LCBC approach that this goal is achievable.
This construction includes the development of LCBC conditions at grid faces as well
as at grid corners for two-dimensional domains and at grid edges and vertices for
three-dimensional domains.

Compatibility boundary conditions have been used with finite-difference methods
for many years', although it appears that the approach is not widely known. In our
work, we have used CBCs for second-order and fourth-order accurate approximations
of the heat equation [20] and the incompressible Navier-Stokes equations [17, 35].
For wave equations, we have described the use of CBCs for the compressible Euler
equations [21] and linear elasticity [4], and for high-order accurate approximations
to Maxwell’s equations [18, 2]. CBCs are also useful for problems involving material
interfaces, such as conjugate heat transfer [19] and electromagnetics [18, 6]. In recent
work, we have developed Added-Mass Partitioned (AMP) schemes for a wide range
of fluid-structure interaction (FSI) problems, including schemes for incompressible
flows coupled to rigid bodies [13, 12, 14] and elastic solids [37, 38]. These strongly-
partitioned schemes incorporate AMP interface conditions derived using CBCs and
the physical matching conditions at fluid-solid interfaces in order to overcome added-
mass instabilities that can occur for the case of light bodies [10, 11]. In related work,
we have also used CBCs in the CHAMP scheme [34] to form discrete interface condi-
tions for a partitioned approach to the solution of conjugate heat transfer problems.

In other work, CBCs are used in the book by Gustafsson on high-order difference
methods [16]. CBCs have also been used to derive stable and accurate embedded
boundary? approximations [26, 36, 5]. CBCs have been incorporated into summation-
by-parts schemes by Sjogreen and Petersson for the equations of elasticity [40]. CBCs
have been used by LeVeque and Li with their immersed interface method to develop
accurate approximations at embedded interfaces [28, 29, 27]. Shu and collaborators
have used CBCs in their inverse-Lax-Wendroff approach for hyperbolic equations and
conservation laws [42, 15, 33, 39] as well as for parabolic and advection-diffusion
equations [30, 31, 32].

In this article we focus on high-order accurate finite-difference schemes. We note,
however, that CBCs could also be useful for Galerkin schemes. Typical high-order
accurate FEM or DG schemes that use polynomial approximations over an element
effectively use one-sided approximations near boundaries. This can result in time-
step restrictions that force the time-step to decrease rather significantly as the order
of accuracy increases [24, 41, 22]. Similarly for B-Spline FEM, as commonly used in
isogeometric analysis, one-sided operators occurring near boundaries result in spurious
large eigenvalues, so-called outlier eigenvalues [23]. Banks et al. [7, 8, 25], however,
have shown that when CBCs are used with their Galerkin-Difference method, a class
of FEM schemes, the spectrum of the operator is near-optimal, and the time-step
restriction for explicit integration gives approximately the maximal CFL-one stability.

IFor example, CBCs were known to Professor H.-O. Kreiss and his students at least since the
1980’s.

2By embedded boundary we mean a boundary curve (or boundary surface in three dimensions)
that passes through a grid in an irregular fashion (as opposed to a boundary-conforming grid).
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4 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

2. Second-order PDE initial-boundary-value problems and discretiza-
tions. In this section, we consider initial-boundary-value problems for a general scalar
second-order PDE and corresponding high-order accurate finite-difference approxima-
tions as a basis for a full description of the LCBC approach which follows in the next
section. Consider the initial-boundary-value problem® on [0,T] x Q, T > 0, given by

0fu:Qu+f(x,t), XEQa tE(O,T], qg=12
(2.1) Bu(x,t) = g(x,1), xed, te][0,T],
2 u(x,0) = uq_1(x), x€Q, a=1,...,q, q=12.

Here, Q < R? is a general domain, 0 denotes the boundary of ©, and Q = Q U 9.
We define the variable coefficient elliptic operator @ as

(2.2) Qu ef c11(x)02u + 2¢12(x) 0,0y u + czg(x)ﬁju + ¢1(x)0pu + c2(x)dyu + co(x)u.

We assume that the coefficient functions ¢11(x), ¢12(x), etc., are smooth, and they
are chosen, together with the boundary and initial conditions, so that the problem
is well posed. For example, necessary conditions are that ¢11(x) > 0, caa(x) > 0
and c11(x)ca2(x) — ¢35(x) = & > 0, for all x € 2. We note that (2.2) is taken in
non-conservative form for the purposes of this article; LCBC methods for problems
in conservative form are left to future work.

The governing equation in (2.1), with given forcing function f(x,t), takes the form
of a parabolic (¢ = 1) or hyperbolic (¢ = 2) PDE in second-order form depending
on the choice of the index g. The boundary conditions in (2.1), with given forcing
function g(x,t), are written in terms of the boundary operator given by

(2.3) Bu ¥ b1 (x)u + b2(x)0nu, x € 04,
where 0y, is the outward normal derivative and the coefficient functions satisfy b (x)|+
|ba(x)| # 0, ¥Yx € 0.

We are motivated by the application of the LCBC method for high-order accu-
rate discretizations of the problem in (2.1) on mapped grids. For such discretizations,
we consider a smooth mapping from the unit square to 2. The form of the prob-
lem remains unchanged in the mapped domain, so it suffices to study the governing
equations in (2.1) over the domain Q = (0,1)2.

Let U; ~ u(x;,t) represent the numerical approximation of the exact solution
of (2.1) at discrete points x; on the Cartesian grid €y,

(24) QY (x5 = (w5, 95) = ((Az,jAY), i =0,.... Ny, j=0,...,N,},

where N, and N, determine the number of grid lines in the = and y directions,
respectively, Az = 1/N, and Ay = 1/N, are grid spacings, and i = (7,7) is a multi-
index, see the left plot of Figure 3.1. Let 09, denote the set of grid points on the
boundary and €, = Q5,\0Q), the interior grid points.

Our principal focus is on discretizations of (2.1) to fourth and sixth-order accu-
racy, although we also consider second-order accurate approximations as a baseline.
A second-order accurate discretization of (2.1) employs standard centered differences
for the first and second derivatives given by

ef ef
(25) DQ’C d: DOC’ DQ’CC d: DJFCD*C? C =I,Y.

3The solution of second-order elliptic boundary value problems can also be treated with the

LCBC approach, see [1].
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LOCAL COMPATIBILITY BOUNDARY CONDITIONS 5

Compact fourth and sixth-order accurate centered approximations, Da, ¢ and Dap ¢¢,
p = 2,3, are defined in the usual way, for example,

def A¢? At 2
(2.6) De¢ = DigD—c(I— 3 D+eD-c + 5 (D+¢D—¢) )-

Using these approximations, the d'P-order accurate approximation to @ is given by

def
(2.7) Qan =c11(%i)Dg za + 2¢12(X1)Dax Dy + c22(Xi) D yy
+ ¢1(%i)Da,z + ca(xi)Da,y + co(x:)1.

Similarly let By be the d™-order accurate centered discretization of the boundary
operator B. The semi-discrete model problem now takes the form

angl(t) = Qd,hUi(t) + f(Xiat)7 Xj € Qha te (OvT]7
(28) Bd,hUi(t) = g(Xi,t), Xi € (}Qha te [OvT]7
027 U(0) = ua—1(xi), xe€Qy, a=1,...,q.

Grid points along ghost lines at each boundary of €2, are introduced to accommodate
the stencil of the discrete spatial operators near the boundaries, and these are included
in the extended grid defined by

e def . .o . .
(29) Qh = {Xi | 1= (27,7)7 i=-p,...,Ne+p, j :_p;~~~7Ny +p}7

where p = d/2. We evaluate the solution at the ghost points using the LCBC method.

The LCBC method uses compatibility boundary conditions obtained from the
primary boundary conditions and the governing PDE (and its derivatives) applied on
the boundary. Taking ¢ time derivatives of the primary boundary condition in (2.1)
gives

(2.10) Bolu(x,t) = dfg(x,1), x € 0Q,

at a fixed time t € [0,7]. Applying the PDE from (2.1) yields

(2.11) BQu(x,t) = dfg(x,t) — Bf(x,t), x € 0N

Repeating the process v times gives the v compatibility condition

(2.12) BQ"u(x,t) = 0{"g(x,t) — BY, f(x,t), x€d, v=12..., CBCg,lv]

denoted by CBCp 4[v], where ¥, is a differential operator defined by

(2.13) U, f(x 1) Y QM k), xed, v=1,2,....
k=1

3. LCBC method. We now provide a description of the LCBC method for the
IBVP in (2.8). The goal is to specify solution values at ghost points adjacent to
grid faces and grid corners; these are shown in Figure 3.1 for the case of a fourth-
order accurate scheme that requires two ghost points. We first consider a coordinate
boundary away from corners where two coordinate boundaries meet. We choose a
Dirichlet-type boundary condition and introduce the LCBC method using a direct
approach. For a more efficient implementation, we improve upon this direct approach
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6 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

by adopting a stencil representation of the solution at the ghost points; we call this
improved method the stencil approach. The process is similar for a Neumann or Robin
boundary condition, see [1]. Finally, we describe the treatment near the corner.

X—2,Ny+2 XNg+2,Ny+2 |

‘
Pt

--- T 1 f ® interior and
)

1 XO,Ny T~~~ — XNy, Ny, —] FXo,j ) boundary points

needed for LCBC

e center boundary
I | - point

X0,0 : o ghost points to

be computed

|  XN0 [ |

X_92 -

FIGURE 3.1. Grid, with ghost points, for a fourth-order accurate approximation.

3.1. Dirichlet boundary. As an example of the LCBC method for Dirichlet
boundary conditions, let us consider the left boundary, z = 0 with y € [0, 1], and
assume that the boundary operator in (2.1) becomes

(31) U(Xa t) = gf(yv t)a xXe an,

for a fixed time ¢ € [0, T]. Define an interpolating polynomial @(x,y), centered about
(2,9), as

, o o
(32 Ay YN dmLm<A>L<yAyy) pett

where Lj(z) is a Lagrange basis function Ly(z) = [[}__, gz:g Note that @ has the
l#k
property ﬁ(fc—l—iAx, ;t]+jAy) =d; s, fori,j = —p,...,p. Them = (2p+1)? coefficients
dins M, 7 = —p,...,pin (3.2) are found by enforcing the constraints
(3.3a) (0,7 +jAy) = ge(5 +JAy, 1), J=pn,
(3.3¢) 2y Q"u(0,9) = 04 R, (7, 1), v=1,....,p, u=0,...,2p,
where
def Aqu
(34) RZ,V(ya t) = ag g@(ya t) - \I/Vf(oa Y, t)

The constraints in (3.3a) are the Dirichlet boundary condition applied at 2p + 1 grid
points about the boundary point (0,7), while (3.3b) sets @ equal to U; at p(2p + 1)
grid points interior to the boundary point. The last constraints in (3.3¢) require
that u satisfy 2p + 1 tangential derivatives of the compatibility boundary conditions,
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LOCAL COMPATIBILITY BOUNDARY CONDITIONS 7

CBCyq4[v], v = 1,...,p, evaluated at the boundary point (0,7). Together, the con-
straints in (3.3) imply 7 = (2p + 1)? linear equations for the m coefficients in @ for
each point (0,7) € 082, where

~ def . .
(35> an,hz{Xi|7’=0aj=p7p+17"'7Ny_p}7

is the set of grid points along the left boundary = = 0 sufficiently separated from the
corners at y = 0 and 1.
The m x m linear system implied by (3.3) has the form

(3.6) Ad = b,

where A € R™*™ is a coefficient matrix, b € R™ is a right-hand side vector and
d € R™ is a vector containing the coefficients of the interpolating polynomial in (3.2)
organized as

T
(3~7) d= [dfpﬁpa ce 7dfp,p | d*pH,*pv cee vdfp+1,p ‘ e | dp,fzw cee adp,p] .

The matrix A, as constructed in Algorithm 3.1 for a point X on the boundary, has
the 2 x 2 block structure

(3.8) A=

A A
0 I ’

The elements in the matrices Aj; € R™1X™1 and A1 € R™ X2 with m; = p(2p + 1)
and me = (p+1)(2p+1), are obtained from derivatives of the interpolating polynomial
@ implied by the conditions in (3.3c). The mqy x My identity in the lower-right block
of A is implied by the conditions in (3.3a) and (3.3b). The matrix A is nonsingular
provided that the coefficient function c¢;1(x) associated with the highest z-derivative
in the differential operator Q does not vanish (see Theorem 4.1 discussed later in
Section 4.1). Algorithm 3.2 shows the construction of the right-hand side vector b
which follows similar steps to that used to build A. The solution of (3.6) yields the
coefficients dy, 5 of the interpolating polynomial, and in particular

(3.9 U.-=d

1,3 7,00 t=-p,...,—1

which sets the values of U;j in the p ghost points corresponding to the boundary
point X.

3.1.1. LCBC method: Direct approach. In the direct approach to the
LCBC method, the matrix A and vector b in (3.6) are constructed for each point
on the boundary, and then the system is solved to determine ghost points following
the assignments in (3.9) for example. Points on the boundary near corners require
special treatment, and this is discussed in Section 3.2.

An important element of the direct approach, and the stencil approach discussed
next, is an efficient calculation of the matrix A. The main step in this calculation
appears in line 8 of Algorithm 3.1, which is independent of time ¢ and need only be
performed once for a given problem. This step involves applying repeated y-derivatives
and powers of the operator @@ on the product of Lagrange basis functions L.; and Ly,
and then evaluating the result at a point x on the boundary. While this calculation
can be carried out analytically, the form of @ in (2.2) involving general coefficient
functions, ¢11(x), c12(x), etc., makes this calculation increasingly messy as the order
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8 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

Algorithm 3.1 Construct the coefficient matrix A for a Dirichlet boundary.
1: r=0;

2: forv=1,...,pdo

3: for u=0,...,2p do

4: r=r+1;

5: for m = —p,...,p do

6: for n = —p,...,p do

7: c=2p+1)(Mm+p) +n+p+1;

8: A(r,c) = 04 Q" Ly ((z — ) /Az) Ly ((y — Q)/Ay)‘x:i ; > Elements of A from (3.3c)
9: end for

10: end for

11: end for

12: end for

13: for 2 =0,...,p do

14: for j = —p,...,p do

15: r=r+1;

16: A(r,r) =1; = Elements of A from (3.3a) and (3.3b)
17: end for

18: end for

Algorithm 3.2 Construct the right-hand side vector b for a Dirichlet boundary.

1: r=0;

2: forv=1,...,pdo

3: for u=0,...,2p do

4: r=r+1;

5: b(r) = 0y Re, (9, 1); = Elements of b from (3.3c)
6: end for

7: end for

8: forj':fp,...,pdo

9: r=r+1;

10: b(r) = g¢(§ + jAy, 1); = Elements of b from (3.3a)
11: end for

12: forfz},...,pdo
13: for j = —p,...,pdo

14: r=r+1;

15: b(r) = U; 5,5(t); > Elements of b from (3.3b)
16: end for

17: end for

of accuracy determined by p increases. Also, it is desirable to avoid having to specify
derivatives of the coefficient functions. With these issues in mind, a more practical
approach is described in Algorithm 3.3 which computes suitable approximations of
these elements, denoted by Zy, »[u,v], in a particular column of A determined by
given values of 7,7 € {—p,...,p} defining the basis functions. The row entries are
determined by the integers p and v, and we note in advance that the algorithm only
requires evaluations of the coefficient functions at points on the grid.

The first collection of steps in the algorithm results in the calculation of the grid
function V;[v + 1, k] in line 16 defined by

(310) V%[M k] déf (Qd’h)yLm (E)Lﬁ (j), VvV = 17 ey Dy

where the indices (1, 71) are fixed and the order of accuracy of the approximation
isd =2k, k=1,...,p+1—v. Note that the highest order of accuracy, given by
2(p + 1 — v), decreases as v increases. The calculation of V;[v + 1,k], determined
by the function applyQh, follows from the form of the discrete operator Q4 ;. The
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LOCAL COMPATIBILITY BOUNDARY CONDITIONS 9

Algorithm 3.3 Compute Zy, 5[y, v] ~ 65Q”Lm((ac — &)/Az) Ly ((y — )/ Ay)|
1l: fork=1,...,pdo
for i€ Q4[0,%] do o Initialize Vi[0, k] = L3, (3) L (5)
Vi[0,k] = Lin () La(3);
end for

3

4

5: end for

6: forv=0,...,p—1do
7

8

9

x=X"

fork=1,...,p—vdo
fori=1,...,k—1do

: for ie Qy[v, k] do > Compute corrections Wi(m’n) [v,1] involving V;[v,1]
10: form=0,...,k—1ldo
11: w DT 1) = (D D)™ (Dyy D—y) R D=V, 1);
12: end for
13: end for
14: end for
15: forie Qh[y +1,k] do > Compute V;[v + 1,k] = (Q%’h)VE[V, k]
16: Vilv + 1, k] = applyQu{V;[v, k], W™ v,k — 1],..., W™ [1,1]};
17: end for
18: end for
19: end for
20: forv=1,...,pdo > Compute Z; j[u,v] using V;[v,k], k=1,2,...,p+1—v

21: k=p+1-—v;
22: Z,;MAL[O, l/] = ‘/0’()[1/7 k]
23: forl=1...,pdo

24: w =2l

25: {Zm,nlp —1,v), Zmalp, v]} = applyDy{Vi[v, 1], ..., Vi[v, k]};
26: end for

27: end for

domain for the local index i, denoted by ,[v, k], for each calculation is defined by

(3.11) Qh[u, k] def [—wg, wg] X [—wy, w,], wy=p—(W+k—1), wy,=w;+p,

and this gives the minimum stencil width required for the subsequent calculation of the
discrete y-derivatives of Vi[v, k] performed in the second collection of steps starting at
line 20. Here, the main step involves the function applyDy in line 25 which computes
the odd/even derivative pair Zy;, (¢ — 1,v] and Zy, 5[, v] using standard centered
finite differences in the y-direction to order of accuracy d = 2k = 2(p + 1 — v).

The elements of the right-hand side vector b in (3.6) are specified by Algorithm 3.2
for the case of a Dirichlet boundary along £ = 0. The difficult step appears in line 5
and it involves the calculation of successive y-derivatives of Ry, (7,t) defined in (3.4).
The calculation of Ry, (y,t), in turn, requires powers of the operator @) applied to the
forcing function f(x,t). As before, we use a practical approach in which the various
derivatives, both in space and time, are performed approximately to appropriate or-
ders of accuracy. At present we have considered only a spatial discretization in the
semi-discrete model in (2.8) and so we assume the time derivatives in Ry, (7,t) are
exact for now. In terms of the spatial approximations, a key step involves applying
powers of the discrete operator Qg onto f(x,t) evaluated at grid points about X,
and this can be done efficiently following steps similar to those described in Algo-
rithm 3.3. Discrete y-derivatives are then applied to the result, again following the
previous algorithm. The principal details involve the approximations of Ry, (7, t) and
these are given in Algorithm 3.4.

It is worth noting that the elements of b must be calculated at each time step.
Also, the approximation of df Ry ., (§,t) uses values of R, [v,t] about g, computed in
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10 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

Algorithm 3.4 Compute R, ;[v,t] ~ Ry, (7 + JjAY, t) for ¢ > 0

1: forv=1,...,pdo

2: for j € [-p, p] do > Initialize R, [u t] =0 ge( + jAy, t)
3 Re,j [v,t] = applyDt{gzj(t),qu};

4 end for

5: end for

6: forn=0,...,p—1do

7

8

fork=1,...,pdo

: for i€ [0, k] do o Initialize F3[0, k, t] = 07" f(% + x;, 1)
9: F[0,k,t] = applyDt{f;(t), qn};
10: end for

11: end for
12: forv=0,...,p—n—2do

13: fork=1,...,p—vdo
14: forli=1,...,k—1do
15: for ie Oy[7, k] do > Compute corrections I/I/§(7n’n)[ﬁ7 l,t] involving F;[7,1,t]
16: form=0,...,k—1ldo
J(k—1 _— _
17: wm - ’">[u 1,t] = (DioD—y)™(D4y D—y)E=D=m F [, 1, 1];
18: end for
19: end for
20: end for
21: for ie Q[P+ 1,k] do & Compute [0 + 1,k,t] = (Qar,n) F;[7, k, t]
22: Fi[7 + 1, k,t] = applyQh{ F[7, k, 1], Wi(m’")[ﬂ, k—1,4],..., Wi(m’n)[f/, 1,4}
23: end for
24: end for

25: end for
26: forv=n+1,...,pdo

27: v=v—n-—1;

28: k=min{p+1-7, p};

29: for j € [-p, p] do = Update R, ; [7,1]
30: Ry s[vt] = Ry 5w, t] — Fy 5[0, kst

31: end for

32: end for

33: end for

Algorithm 3.4, and these can be used by the approximations at neighboring values
along the boundary. This observation suggests a possible savings in computational
cost that is explored with the stencil approach discussed next.

3.1.2. LCBC method: Stencil approach. The aim of the stencil approach is
to manipulate the linear system in (3.6) so that the values in the ghost points in (3.9)
corresponding to a point x on the boundary can be computed using the stencil formula

p Jtp p Jtp .
(312) U= Y o (”’J Roglv.t] + Y. Z B(”) ), i=—p,... -1,
v=1j=jp i=0j=j—p

(v

where o ]’] ) and ﬂ ]’J are coefficients belonging to the left boundary centered at X0 ;

A central point is that the coefficients in (3.12) do not depend on time ¢ and can
be computed from the matrix A in (3.8). Thus, the values in the ghost points can
be computed efficiently via a fixed linear combination of the relevant time-dependent
data given by Ry ;[v,t] and the grid data given by U; ;(t). This grid data includes
values at interior points close to the boundary for ¢ = 1,...,p and Dirichlet boundary
data, Ug ;(t) = ge(y;,t). Note that Algorithm 3.4 computes R, [v, t] for values of the
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LOCAL COMPATIBILITY BOUNDARY CONDITIONS 11

local index j about j, but the range of the y-index can be extended readily to cover
the whole left boundary (sufficiently separated from the corners).
To compute the coefficients in (3.12), we consider the linear system in (3.6) in

the form
A11 A12 dl _ DyR(t)
0 I ds u) |’
where d = [dl, d2]7 holds the coefficients of the interpolating polynomial, R(t) e R™
is a vector containing Ry ;[v,t], U(t) € R™? is a vector containing U; ;(¢), and D, €
R™1X™M1 ig the matrix operator representing the discrete y-derivatives of Ry j[v,t].
We are mainly interested in the elements of d; which give the ghost values in (3.9).

The lower set of mg equations in (3.13) implies do = U(t) so that the upper set of
M equations becomes

(3.13)

(3.14) A11di = DyR(t) — A12U(2).

Let C, € R™*™1 and Cg € R™*™2 golve the matrix systems
(3.15) A11Cy = Dy, A11C = — Ao,
so that (3.14) reduces to

(3.16) d; = CoR(t) + CgU(2).

The sets of coefficients, {a;(,yjj )} and {ﬁl(gj )}, in the stencil formula in (3.12) are given
by the elements along selected rows of C, and Cg, respectively, corresponding to the
desired ghost values in d;. We note also that the linear systems in (3.15) are dense

but not very large, e.g. A1; is 21 x 21 for p = 3.

3.2. LCBC conditions at a corner. As a representative case involving the
conditions at a corner, let us consider the bottom-left corner, & = (0,0), where two
Dirichlet boundaries meet. The cases of a Neumann-Neumann corner and a Dirichlet-
Neumann corner are discussed in [1]. The physical (primary) boundary conditions
are taken to be

(317&) U(X, t) = g[(y7 t)7 X€ 6957
(3.17b) u(x,t) = gp(z,t), x € 08,

for some fixed time ¢. We start by specifying the interpolating polynomial @(x) at
known interior data given by

(3.18a) a(ilx, jAy) = U; 5(t), i=1,...,p, j=1,...,p.

Next, we apply tangential derivatives of the primary boundary conditions and com-
patibility conditions given by

21(0,0) = (0, 1)
3.18b Y Y Mo,
(3.180) 28a(0,0) = dtgy(0, 1) e
and
o1QV(0,0) = A1 Ry, (0,1)
318 v Y ’ :17"', ) MV}
(3.18¢) QY (0,0) = A" Ry, (0, 1) Y P KE
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12 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

respectively, where Ry, (y,t) is defined in (3.4) and Ry, (x,t) is defined by

(3.19) Ry (z,t) < 08 gy (2,t) — U, f(x,0,1).
The sets M,, v =0,...,p, chosen to eliminate redundant constraints, are given by
(3.20)

0,1,2,3,...,2p—1,2p, if v = 0, with an average for u = 0,

1,2,3,4,...,2p—1,2p, if v = 1, with an average for u = 2,
M, = 1, 3,4,5,...,2p—1,2p, if v =2, with an average for u = 4,

1, 3, 5,...,2p—1,2p, if v=p, with an average for u = 2p.

Note that there is one value for p in each set M,, where the pairs in (3.18b) and (3.18¢)
are averaged to resolve linearly dependent constraints (and to balance the constraints
on the left and bottom boundaries). The weights for the averages are Ay* and Az#
for the CBCs arising from the left and bottom boundaries, respectively, to balance the
tangential derivatives taken in the y and x directions. Ghost points near the corner
can be obtained from the solution of the linear system implied by (3.18) following a
direct approach, or these ghost points can be written in terms of the stencil formula

p p P p _ p p
(321) Ug&:Z Z ~(UJ)R€th]+Z Z_“ 52(3 szl/t ZZ (1])

— v=01 P

where Q, & {i =) -p<(,))<p\1< (1)) < p} defines the set of local indices
for the ghost-point values in (3.21). The time-dependent data Ry j[v,t] and Ry ;[v,t]
n (3.21) are discrete approximations of Ry, (jAy,t) and Ry, (iAz,t), respectively,
for v =1,...,p. The boundary conditions are specified in (3.21) by setting

(322&) Rf,j [07 t] = gf(]Ayv t)? .7 =Dy D
(3.22b) Ry i[0,t] = gp(iAz, 1), 1=—p,...,D,

similar to previous specifications. The coefficients in the stencil formula are derived
from the m x m linear system implied by (3.18) following the analysis described for
the Dirichlet boundary.

Our choice for the constraints in (3.18) is guided by the case when @ in (2.2) is
the Laplacian operator. For this case, the constraints are linearly independent. For
the more general operator @) with variable coefficients, the constraints remain linearly
independent provided c¢11(x) > 0, ca2(x) > 0 and |c12(x)| /+/c11(X)co2(x) is small, for
x in a neighborhood of the corner. Should these conditions be violated, the m x m
matrix A implied by (3.18) may become singular or badly conditioned. For example,
if ¢11 > 0, co2 > 0 and ¢ are constants, and if ¢; = ¢ = ¢g = 0, then the determinant
of A for the case p =1 (d = 2) has the form

det(A) = —DAxAy(c11 + co2)(c11c00 — 40%2), D = constant > 0.
Thus, A becomes singular when |c1a| = 1/c11¢22/2. Another case for which A is rank

deficient occurs when c¢j1 = oo = 1, ¢12 = 1/2, ¢1 = ¢3 = ¢p = 0 and Az = Ay, and
for any value of p.
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As noted earlier, we are motivated by high-order accurate discretizations of the
IBVP in (2.1). For many problems of interest, this problem is obtained by an orthog-
onal, or near-orthogonal, mapping of a PDE in physical space involving the Laplacian
operator. The resulting mapped problem would have |¢12(x)| small relative to ¢11(x)
and ca2(x) resulting in a nonsingular matrix A implied by the constraints in (3.18) for
a Dirichlet-Dirichlet corner. The matrices for the Neumann-Neumann and Dirichlet-
Neumann corners are also nonsingular under these conditions, see Theorem 4.2.

4. Analysis of the LCBC approach. In this section, we provide some results
of an analysis of the LCBC approach. In particular, we consider the solvability of
the matrix systems associated with the constraints implied by the LCBC method for
points along a grid side and at a grid corner. We then consider symmetry properties
of the discrete approximations generated by the LCBC method for the case when the
PDE involves the Laplacian operator. Finally, we examine the stability of explicit
time-stepping schemes for the wave equation with numerical boundary conditions
given by the LCBC approach.

4.1. Solvability of the LCBC matrix systems. We first consider conditions
required for the LCBC matrix systems to be nonsingular. This is done for the case of
a constant-coefficient operator @) given by

(41) Q = Cllai + 2012&1674 + 62255 + 10, + Cgay + Cp.

For this operator, we have the following result:

THEOREM 4.1 (Solvability on a face).  The matriz resulting from the order
2p = 2,4,6 LCBC constraints for the constant-coefficient operator @ in (4.1) with
a Dirichlet or Neumann boundary condition on a grid face is nonsingular provided
c11 > 0 and Ax is sufficiently small (left or right face) or caa > 0 and Ay is suffi-
ciently small (bottom or top face). If ¢ = 0 (left face) or co = 0 (right face), then
the matriz is nonsingular for any Az and Ay.

Proof. Let us focus on the left boundary, while similar arguments hold for the
other boundaries. For either a Dirichlet or Neumann boundary, the determinant of A,
for order of accuracy 2p = 2,4, 6, has the form

1 Ax

(42) det(A) = KPGP(é')v g = i1 5 p= 13273,

where K, is a non-zero constant depending on Az, Ay and ¢11, and where G,(§) is a
polynomial satisfying G, (0) = 1. For the Dirichlet case, the polynomials are given by

3 9 N
ao-(1-5) eo-(1-F+5-5).

1162 1601¢% 1216 1165 0T
4 1440 ' 480 400 ' 800

cma—@—%+

The forms of G, for the Neumann case can be found in [1]. The result of the theorem
follows from the form of the determinant of A in (4.2). As expected, the lower order
terms in (4.1) become less important for the solvability of the system as the grid
spacings tend to zero. ]

The solvability conditions at a corner are more complicated. For this case, we
focus on the constant-coefficient operator in (4.1) with the coefficients of the lower-
order terms set to zero, i.e. cg = ¢1 = co = 0, and define the dimensionless parameters
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14 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

v = \/0011%22, and ¢ = q/z;?ﬁiz, assuming c1; > 0 and ¢y > 0. Recall that when
choosing the corner compatibility conditions we assumed that |c12| is small compared
to ¢11 and ¢g2, and this now corresponds to |y| small. The following theorem de-
scribes the solvability of the LCBC matrix systems for the Dirichlet-Dirichlet (D-D),

Neumann-Neumann (N-N) and Dirichlet-Neumann (D-N) corners.

THEOREM 4.2 (Solvability at a corner). The matrices resulting from the LCBC
constraints at D-D, N-N and D-N corners for the constant-coefficient operator @
in (4.1) with ¢11 > 0, caa > 0, and co = ¢1 = ca = 0 are nonsingular provided any of
the following conditions hold:

1. v=0 (c12 =0), for orders 2p = 2,4,6.

2. |v| is sufficiently small, for orders 2p = 2, 4.

3. v <0 and || is sufficiently small, for order 2p = 6.

4. v >0 and (o + 1/0)y is sufficiently small, for order 2p = 6.

Proof. We consider the corner where the left and bottom boundaries meet, while
similar arguments hold for the other corners. For D-D, N-N and D-N corners, the
determinant of A has the form

(4.3) det(A) = K, H,(v)Ep(y,0), p=1,23,

where K, is a non-zero constant depending on Az, Ay, ci11 and cao, Hp(7) is a
polynomial satisfying H,(0) = 1, and F,(v,0) is a polynomial in + with coefficients
that depend on o. For a D-D corner, we have

Hy(y) =1 —49%  Hy(7) = (1—4¢%)% (1 — 2842 + 2087* — 2567°) ,
Hs(y) =(1— 472)4 (1—12+4 + 1674)2 (1 — 104~ + 3984~* — 68480~°
+509440~° — 1278976+'% + 9216007'?)

and
1
Fl(’YaU) =1, F2(730)23<0-+;) 7477
5 11 L1 , 1
F3(v,0) =7200 0"+ 0+ —+ — | —7[3960 (0~ + — | + 28070 ( o + — | + 26620
o o3 ot o2
2 3, 1 1 3 2, 1
+97|13423 (0" + = | + 39483 o+ — | | =~ (14399 ( 0" + — | + 28798
o o o

o))

The corresponding formulae for the N-N corner and D-N corner are given in [1]. Note
that when v < 0, the functions F), are always positive and bounded away from zero.
The result of the theorem follows from the form of the determinant of A in (4.3). O

We note that a good quality grid usually aims to have o ~ 1. One way to see this
is to note that if ¢11 « cog then there could be boundary layers near x = 0 or z = 1,
which would require a small value for Az to resolve the solution there. We also note
that for order 2p = 6 when v > 0 (c12 > 0), we require not just v to be small but also
~vo and /o to be small. Thus the corner LCBC matrix could be poorly conditioned
if o becomes large or small when ¢y > 0. This could occur, for example, if one only
refined the grid in the z-direction.
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4.2. Symmetry properties of the LCBC conditions. The next two theo-
rems concern symmetry properties of the numerical boundary conditions generated
by the LCBC method for a boundary face and corner. These symmetry conditions
pertain to the case when @ is the Laplacian operator and the domain is represented
by a Cartesian grid. The first theorem considers the symmetry for a boundary face.

THEOREM 4.3 (Symmetry on a face). When applied to the operator Q = A on a
Cartesian grid, the LCBC approach on a face, at any order 2p = 2,4,6, ..., results
in numerical boundary conditions with odd symmetry for the case of homogeneous
Dirichlet boundary conditions and with even symmetry for the case of homogeneous
Neumann boundary conditions, for example,

(4.4a) Ui =="Usy i=1,...,p, Dirichlet BC at i =0 ori = Ng,
(4.4b) Uiii= Uy i=1,...,p, Neumann BC ati =0 ori= N,.

Proof. First consider the case of a homogeneous Dirichlet boundary condition on
the left side, i = 0, away from the corner. Without loss of generality we may take
Z = 0 and y = 0, and then the polynomial interpolant @ can be written as

2p  2p
(4.5) i(x,y) = Z Z pm ™ Y™, p=12....

n=0m=0

We wish to show that @(z, 0) is an odd function in z, so that i(z,0) = a1 oz +az o2+
.. agp—1,02*P~ 1 for then we have 4(—z,0) = —a(z,0) and the desired result follows.
The CBCs in (3.3¢) reduce to

(4.6) a4y A”a(0) =0, v=0,....,p, u=0,...,2p, CBCly,v],

where the case v = 0 follows since Uy ; = 0 from the homogeneous boundary condition.
For the purposes of the proof, we have labeled the conditions in (4.6) as CBC[u, v].
We will show that (4.6) implies that all even z-derivatives of @ at x = 0 are zero,

(4.7) 2Yu(0) = 0, v=0,...,p,

which implies that @(x,0) is an odd function in z. The conditions in (4.7) can be
shown as follows. We have 0!/@(0) = 0, for 4 = 0,1, ..., since the Dirichlet conditions
are homogeneous and since u is a polynomial of finite degree. Then, from CBCJ0, 1],
we see that (4.7) holds for v = 1 since 92a(0) = —d2a(0) = 0, and from CBClp, 1]
we also find 0l02a(0) = —d4+2a(0) = 0, for = 0,1,.... Now from CBC[0,2], we
find that (4.7) holds for v = 2, since 0;a(0) = (—2020; — @,)u(0) = 0, and from
CBC[u, 2] we also find 655’;111(0) =0, for p = 0,1,.... The process can be repeated
to show (4.7).

The argument is similar for the case of a homogeneous Neumann boundary condition
except that in this case it can be shown that all odd z-derivatives are zero, 0214 (0) =
0, for v =0,...,p, so that a(—=x,0) = a(x,0). d

We now consider the symmetry at a corner. For this case, note that the LCBC
conditions are used to obtain values in ghost points in the corner of the extended grid
and also at nearby ghost points belonging to the adjacent faces, see Figure 3.1 for the
case p = 2 for example.
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16 LOCAL COMPATIBILITY BOUNDARY CONDITIONS

THEOREM 4.4 (Symmetry at a corner). When applied to the operator Q@ = A
on a Cartesian grid, the LCBC approach applied at any corner and at any order
2p = 2,4,6,..., results in numerical boundary conditions on the adjacent faces with
odd symmetry for the case of homogeneous Dirichlet boundary conditions and with
even symmetry for the case of homogeneous Neumann boundary conditions. At a left
boundary, for example, the symmetries are given in (4.4). Values at the corner ghost
points have even symmetry for Dirichlet-Dirichlet (D-D) or Neumann-Neumann (N-
N) corners and odd symmetry for Dirichlet-Neumann (D-N) corners. At a bottom-left
corner, for example, the values satisfy

(4.8a) Uiij5= Usijrgr wI=1....p D-D or N-N corners,
(4.8b) Ui ij—5= Uiy Hi=1....p, D-N corner.

Proof. Consider the case of homogeneous Dirichlet boundary conditions on the
left side, ¢ = 0, and the bottom side, j = 0, so that we have a D-D corner at x = (0, 0)
and grid index i = (0,0). With @ given in (4.5) we show that

and thus @(—z, —y) = @(x,y). To show (4.9), we show
(4.10a) 0y 0,7 u(0) = 0, my =2k, mg=0,1,...,2p,
(4.10b) 0y 0, u(0) = 0, my =0,1,...,2p, mg =2k,

where k = 0,1,...,p. Recall that @ satisfies the boundary conditions in (3.18b) and
the compatibility conditions in (3.18¢) with homogeneous boundary data, so that

LAVE(0) = 0

4.11
(4.11) 2EAVi(0) = 0

} V= 07 1’ A 7p’ l’L E MV7
where M, is defined in (3.20). Using mathematical induction, we find that (4.11)
implies

L2/ a(0) = 0

4.12
(4.12) o2 a(0) = 0

} v=0,1,...,p, pmeM,.

Set my = 2k for k = 0,1,...,p. The first set of conditions in (4.12) implies that
(4.13) 0y 0, u(0) = 0, for mg =1,3,5,...,2k — 1,2k, 2k + 1,...,2p,
while the second set of conditions in (4.12) gives

(4.14) or1aTea(0) =0,  for ma =0,2,4,...,2k

Hence, for m; = 2k, we have

(4.15) o2 (0) = 0, for mo = 0,1,2,3,...,2p,

for any k = 0,1,...,p. The result in (4.10b) follows using a symmetric argument.
Therefore, we have odd symmetry on the Dirichlet side near the corner and even
symmetry at the D-D corner. The results for N-N and D-N corners follow using
similar arguments. 0
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4.3. Stability of LCBC approximations for the wave equation. We now
consider the stability of an explicit modified equation (ME) time-stepping algorithm
for the wave equation 0?u = ¢>Au on a Cartesian grid using the LOCBC approach at
the boundary. The ME time-stepping schemes are given in [1]. In [3] it was shown
that an ME scheme for the wave equation in one space dimension is stable at any
order of accuracy, 2p = 2,4,6, ..., under the condition cAt/Axz < 1, where At is the
time-step. In two dimensions (or three dimensions), the time-step condition depends
on whether selected terms are dropped to retain a stencil width of 2p + 1 or not. For
example, at sixth-order, the term Ai R Ui appears, and it has a term proportional
to Azt (D4, D_;)*U which can be dropped (since it is also multiplied by At?). If
appropriate terms are dropped so that the stencil width of the ME scheme is 2p + 1,
then the time-step restriction for two-dimensional problems is

EINE 1 1

(4.16) At (AIQ + 5 ) <1,
for orders of accuracy 2p = 2,4,6, as given by Theorem 4.5 discussed below. We call
this version the compact ME scheme, and we conjecture that the condition in (4.16)
holds at any even order 2p = 2,4,6,... (with a similar result holding for three-
dimensional problems).

The compact ME scheme with LCBC conditions thus has some nice properties.
It achieves high-order accuracy in space and time in a single step. In addition, the
time-step restriction does not change as the order of accuracy increases, in contrast
to some other high-order accurate schemes (e.g. explicit multi-step methods) where
the stable time-step decreases significantly as the order of accuracy increases.

THEOREM 4.5 (Stability of approximations for the wave equation). The IBVP
in (2.1) for the wave equation with ¢ = 2 and Q = A discretized to orders 2p = 2,4,6
with the compact ME time-stepping scheme and the LCBC method on a Cartesian
grid with Dirichlet or Neumann boundary conditions is stable under the time-step
restriction given in (4.16).

Proof. Let the domain be Q = [0, L] x [0, L, ], i.e. a physical domain with lengths
L, and L,. We consider the case of Dirichlet boundary conditions on the left and
right faces and Neumann boundary conditions on the top and bottom. The proof for
other combinations of boundary conditions follow in a similar way. Let us look for
normal mode solutions of the form
(4.17) Wi = A" k!, /@;,
where A is an amplification factor, (k,,k,) are constants and i = (4,7). Since the
LCBC approach leads to discrete boundary conditions that enforce even and odd
symmetry, we can look for normal-mode solutions in space that satisfy these symmetry
conditions. In this case we find that the normal modes are

why

ke
W =A% | sin (Lmz) cos (—yj> ky=1,...,N; =1, ky,=0,1,...,N,,
*, L, L

where Ay x are two possible values for the amplification factor (see below) and
k = (kg, k). For stability we choose At so that |Ay x| < 1 for all valid k, and
ky. It is straightforward to find the symbols of D, D_, and D ,D_,, given by

DyyD_sin (Theti) — —k2 sin (T2}, and Dy, Dy cos (”k”yf) = —k2cos (ﬂk”yj )
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where &, bmA(i%z), k, def bmA(i/Q e, ke Az, and &, def ’Tky Ay. Substitut-
ing (4.17) into the ME time-stepping schemes for the different orders of accuracy,
determined by p, leads to a quadratic equation for A,

(4.18) A% —2b,A+1=0, p=1,23,

where b depends on the various parameters of the discretization. Stability requires
b, € R and |b,| < 1. Note that when b, = +1 there is a double root for A which leads
to algebraic growth which we exclude.

Forp=1,bp =1-— 2(5\2 + 5\2) where A, & cAti“—'” A dﬁf cAt , with [A] < @
|)\ ‘ cAt

. Note that b; < 1 is clearly satisfied, while the condltlon b1 > —1 1mphes
max{kx’ky} (/\w + )\12/) < 1, and this implies the time-step restriction in (4.16).

A N R 2
Forp=2by=1— 2(>\2 + A2 4 A 52 k2 Ay? 32 k2) 2(A2 + A2) . From (4.18),

we find Ay = by + 4/b2 — 1. For each A, & cAt/Az and A, ' cAt/Ay, we define
Amax(Az, Ay) = maka7k1/{|A+| ,|A_|}, and ﬁnd the region in the ()\z, Ay) plane where
Amax < 1. We repeat this procedure for the sixth-order accurate scheme 2p = 6.
Figure 4.1 shows that the stability region, Apax < 1, for both the fourth-order (p = 2)
and sixth-order (p = 3) accurate time-stepping schemes. The stability region for both
schemes is found to lie within the unit circle, and thus At satisfies the condition
in (4.16) when p = 2 and 3. In [1] we provide an analytical proof for the stability

results observed in Figure 4.1 when p = 2. ]
L5 Stability Region p = 2,3
‘ A, <1
1 -- unit circle
P = . - N >
Ve N
£ N
05} y \
> ! \
< ! )
= 0 : |
!
g 1 /
0.5 R /
N y
\\ g

71‘.5 7‘1 70‘.5 0 015 1 115
cAt/Ax
FIGURE 4.1. Stability region of the fourth-order and sixth-order accurate ME time-stepping
schemes for the wave equation on a Cartesian grid using the LCBC approach.

5. Numerical results. We restrict our numerical results to two representative
examples; more extensive numerical results are found in the ArXiv version of this
article [1].

We first consider the scattering of a plane incident wave uinc(x,t) = cos[k(z —ct)]
from a cylinder of radius one. We solve the wave equation to orders 2p = 2,4, 6 using
the modified equation (ME) approach. For testing the LCBC method for a problem
with corners, we solve on a domain covering one half the cylinder and use Neumann
boundary conditions on the axis of symmetry and Dirichlet boundary conditions on
the other boundaries. Results are shown in Figure 5.1 where it is seen that the
schemes all achieve their design order of accuracy. The error is seen to be smooth up
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to the boundaries which is a good way to assess the quality of the numerical boundary

conditions.
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FIGURE 5.1. Plane-wave scattering from a cylinder. Maximum errors at T = 1 for solutions
computed using explicit ME time-stepping schemes with d = 2, 4 and 6 (upper left) and the coarsest
grid for h = 1/100 (lower left). Right column shows the scattered field (top), error in the scattered
field (middle) and the total field (bottom) at T =1 computed using the sizth-order accurate scheme
on the finest grid.

For the second example, we solve the IBVP for an advection-diffusion problem
given by

ug = DAu—v-Vu+yu, xeQf te(0,7],
(5.1) u(x,t) = g(x,t), x € 00,
u(x,0) = ug(x), xe P,

where D is a diffusivity, v is a convection velocity and ~ is a reaction rate, all taken
to be constants. The domain and non-orthogonal grid are shown in Figure 5.2. This
problem is solved with the LCBC approach using Backward Differentiation Formula
(BDF) time-stepping. The boundary values are set according to an exact solution
given in [1]. Results, given in Figure 5.2, show that the LCBC-based schemes give
the design order of accuracy and the errors are again smooth up to the boundaries.
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Computed solution u, order 6
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FIGURE 5.2. Heat flow in a wavy channel. Mazimum errors at T = 0.5 for solutions computed
using BDF time-stepping schemes with d = 2, 4 and 6 (upper left) and the coarsest grid for h = 1/40
(lower left). Right column shows the temperature (top) and its error (bottom) at T = 0.5 computed
using the sizth-order accurate scheme on the finest grid.

6. Conclusions. We have described a new approach for constructing numeri-
cal approximations to boundary conditions for high-order accurate finite difference
approximations. The local compatibility boundary condition (LCBC) approach was
developed for general initial-boundary-value problems for second-order scalar PDEs.
The LCBC approach uses compatibility boundary conditions and a local polynomial
approximation on the boundary. Algorithms have been given for computing the lo-
cal LCBC polynomial as well as for forming the discrete stencil approximations that
can be used to efficiently assign ghost point values. The LCBC approach at corners
has also been described. Numerical results were presented in two dimensions that
demonstrate the accuracy and stability of the approach.

In future work we will consider extensions of the LCBC approach to BVPs and
IBVPs in three dimensions, problems with interfaces, problems involving vector PDEs
such as those that appear in electromagnetics or elasticity, and nonlinear problems.
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